Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ABSTRACT

    Comparative Study on Dry Reforming of Methane Over Co-M (M=Ce, Fe, Zr) Catalysts Supported on N-Doped Activated Carbon

    Yinghui Sun1, Guojie Zhang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 105-105, 2019, DOI:10.32604/icces.2019.05173

    Abstract A series of Co-M (M = Ce, Fe, Zr) binary oxides supported on N-doped catalysts were prepared by impregnation methods and tested for DRM reaction. Moreover, the influence of Co and Ce atomic contents in the catalysts on DRM performance was investigated. Significant enhancement of activity performance over Ce promoted 3Co-1Ce/AC-N catalyst was observed. Compared with Fe and Zr, the catalyst with 1/4 mol% of Ce showed the highest activity and was higher than the supported Co catalyst. The calcined and spent catalysts were characterized by XPS, H2-TPR, TEM and EDX mapping studies. The characterization results demonstrated that the improved… More >

  • Open Access

    REVIEW

    Development of CaO From Natural Calcite as a Heterogeneous Base Catalyst in the Formation of Biodiesel: Review

    Nuni Widiarti1, Yatim Lailun Ni’mah1, Hasliza Bahruji2, Didik Prasetyoko1,*

    Journal of Renewable Materials, Vol.7, No.10, pp. 915-939, 2019, DOI:10.32604/jrm.2019.07183

    Abstract Biodiesel is a fossil fuel that is in demand to be developed because it is bio-renewable, biodegradable and environmentally friendly. Biodiesel produced from the transesterification reaction of vege Tab. oil using a base catalyst. CaO is the most developed catalyst for the reaction of transesterification of oil into biodiesel because it is cheap, the process is easy and has a high level of alkalinity. CaO is a cheap catalyst because it is easily obtained from natural ingredients. The use of CaO catalysts in the reaction formation of biodiesel continues to develop through modification with various porous materials and different oxide… More >

  • Open Access

    ARTICLE

    Mixed-Ligand Ni(II), Co(II) and Fe(II) Complexes as Catalysts for Esterification of Biomass-Derived Levulinic Acid with Polyol and in Situ Reduction via Hydrogenation with NaBH4

    Md. Anwar Hossain1,2, Lee Hwei Voon1,*

    Journal of Renewable Materials, Vol.7, No.8, pp. 731-748, 2019, DOI:10.32604/jrm.2019.04703

    Abstract Synthesizing polyol-based ester from biomass feedstocks for the preparation of biolubricant overcomes the dependence on petroleum oil usage. Albeit biomass-derived bio-oil is an alternative for the production of polyol ester, upgrading is essential prior to use as biolubricant. Levulinic acid (LA), obtained from bio-oil was applied for the catalytic esterification with two polyols, e.g., trimethylolpropane (TMP) and pentaerythritol (PE), in the presence of mixed-ligand Ni(II), Co(II), and Fe(II) complexes as catalyst. New mixed-ligand coordination complexes with empirical formula; [Ni(Phe)(Bpy)Cl].H2O, [Co(Phe)(Bpy)Cl].H2O, and [Fe(Phe)(Tyr)Cl].H2O were synthesized by the reaction of ligands [L-phenylalanine (Phe), 4,4'-bipyridine (Bpy), and L-tyrosine (Tyr)] with metal chloride salts… More >

  • Open Access

    ARTICLE

    Highly Functional Polyol Synthesis from Epoxidized Tall Oil Fatty Acids

    Edgars Vanags*, Mikelis Kirpluks, Ugis Cabulis and Zuzana Walterova

    Journal of Renewable Materials, Vol.6, No.7, pp. 764-771, 2018, DOI:10.7569/JRM.2018.634111

    Abstract In this work, free tall oil fatty acids were epoxidized with in-situ generated peroxyacetic acid. Reaction kinetics of epoxidation was investigated by oxirane content and iodine value titrimetric determination, as well as FTIR spectra analysis. A highly functional biobased polyol was synthesized by functionalizing epoxidized tall oil fatty acids with triethanolamine using Montmorillonite K10 as a catalyst. The obtained polyol was analyzed by FTIR and MALDI-TOF MS. The most common chemical and physical characteristics of obtained polyol were determined. More >

  • Open Access

    ARTICLE

    Variation of Physical Properties of Rigid Polyurethane Foams Synthesized from Renewable Sources with Different Commercial Catalysts

    Daniel Brenes-Granados1, Jorge M. Cubero-Sesin1,2, Felipe Orozco Gutiérrez3, Jose Vega-Baudrit3, Rodolfo Gonzalez-Paz3*

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 280-289, 2017, DOI:10.7569/JRM.2017.634118

    Abstract In this work, rigid polyurethane foams were synthesized from renewable sources using different catalysts to study their effect on the mechanical, thermal, chemical and surface properties of the foams. A commercial foam pattern was used as the reference pattern to compare the aforementioned properties. Concentrations of the commercial catalysts were optimized to obtain foams with similar mechanical properties to the commercial foam. Morphological characterization of the foams was performed by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectroscopy was employed to investigate the characteristic functional groups. Thermal characterization was performed by means of differential scanning calorimetry (DSC) and thermogravimetric… More >

  • Open Access

    ARTICLE

    First Principles Computations of the Oxygen Reduction Reaction on Solid Metal Clusters

    Cheng-Hung San1, Chuang-Pin Chiu1, Che-Wun Hong1,2

    CMC-Computers, Materials & Continua, Vol.26, No.3, pp. 167-186, 2011, DOI:10.3970/cmc.2011.026.167

    Abstract An improvement in the catalytic process of oxygen reduction reactions is of prime importance for further progress in low temperature fuel cell performance. This paper intends to investigate this problem from a fundamental quantum mechanics viewpoint. For this purpose, a hybrid density functional theory is employed to analyze the catalytic mechanism of the oxygen reduction at the fuel cell cathode. Major steps in the oxygen reduction that include the oxygen adsorption on solid metal clusters (e.g. Cu and Pt) and complete four proton transfer steps are simulated. Proton transfer processes from hydroniums to the adsorbed oxygen molecules to produce water… More >

  • Open Access

    ARTICLE

    Production of Carbon Nanotubes-Nickel Composites on Different Graphite Substrates

    Munther Issa K,ah1, Jean-Luc Meunier2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 123-136, 2009, DOI:10.3970/fdmp.2009.005.123

    Abstract Multi walled carbon nanotubes (MWCNTs) were synthesized on different graphite types covered with thin layer of nickel catalyst by catalytic chemical vapour deposition using acetylene as hydrocarbon source. The produced carbon nanotubes were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The shape, quantity and diameter of the MWCNTs are shown to be affected by the type of the graphite substrate, the growth temperature and the hydrocarbon source flow rate. The diameters of the produced MWCNTs were ranged between 43 and 80 nm for pyrolytic (PYROID) and polycrystalline (AXF-5Q) graphite, respectively when the… More >

Displaying 31-40 on page 4 of 37. Per Page