Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (54)
  • Open Access

    ARTICLE

    Hunter Prey Optimization with Hybrid Deep Learning for Fake News Detection on Arabic Corpus

    Hala J. Alshahrani1, Abdulkhaleq Q. A. Hassan2, Khaled Tarmissi3, Amal S. Mehanna4, Abdelwahed Motwakel5,*, Ishfaq Yaseen5, Amgad Atta Abdelmageed5, Mohamed I. Eldesouki6

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4255-4272, 2023, DOI:10.32604/cmc.2023.034821

    Abstract Nowadays, the usage of social media platforms is rapidly increasing, and rumours or false information are also rising, especially among Arab nations. This false information is harmful to society and individuals. Blocking and detecting the spread of fake news in Arabic becomes critical. Several artificial intelligence (AI) methods, including contemporary transformer techniques, BERT, were used to detect fake news. Thus, fake news in Arabic is identified by utilizing AI approaches. This article develops a new hunter-prey optimization with hybrid deep learning-based fake news detection (HPOHDL-FND) model on the Arabic corpus. The HPOHDL-FND technique undergoes extensive data pre-processing steps to transform… More >

  • Open Access

    ARTICLE

    Blood Vessel Segmentation with Classification Model for Diabetic Retinopathy Screening

    Abdullah O. Alamoudi1,*, Sarah Mohammed Allabun2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2265-2281, 2023, DOI:10.32604/cmc.2023.032429

    Abstract Biomedical image processing is finding useful in healthcare sector for the investigation, enhancement, and display of images gathered by distinct imaging technologies. Diabetic retinopathy (DR) is an illness caused by diabetes complications and leads to irreversible injury to the retina blood vessels. Retinal vessel segmentation techniques are a basic element of automated retinal disease screening system. In this view, this study presents a novel blood vessel segmentation with deep learning based classification (BVS-DLC) model for DR diagnosis using retinal fundus images. The proposed BVS-DLC model involves different stages of operations such as preprocessing, segmentation, feature extraction, and classification. Primarily, the… More >

  • Open Access

    ARTICLE

    Chaotic Flower Pollination with Deep Learning Based COVID-19 Classification Model

    T. Gopalakrishnan1, Mohamed Yacin Sikkandar2, Raed Abdullah Alharbi3, P. Selvaraj4, Zahraa H. Kareem5, Ahmed Alkhayyat6,*, Ali Hashim Abbas7

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6195-6212, 2023, DOI:10.32604/cmc.2023.033252

    Abstract The Coronavirus Disease (COVID-19) pandemic has exposed the vulnerabilities of medical services across the globe, especially in underdeveloped nations. In the aftermath of the COVID-19 outbreak, a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods. Medical imaging has become a crucial component in the disease diagnosis process, whereas X-rays and Computed Tomography (CT) scan imaging are employed in a deep network to diagnose the diseases. In general, four steps are followed in image-based diagnostics and disease classification processes by making use of… More >

  • Open Access

    ARTICLE

    EsECC_SDN: Attack Detection and Classification Model for MANET

    Veera Ankalu Vuyyuru1, Youseef Alotaibi2, Neenavath Veeraiah3,*, Saleh Alghamdi4, Korimilli Sirisha5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6665-6688, 2023, DOI:10.32604/cmc.2023.032140

    Abstract Mobile Ad Hoc Networks (MANET) is the framework for social networking with a realistic framework. In the MANET environment, based on the query, information is transmitted between the sender and receiver. In the MANET network, the nodes within the communication range are involved in data transmission. Even the nodes that lie outside of the communication range are involved in the transmission of relay messages. However, due to the openness and frequent mobility of nodes, they are subjected to the vast range of security threats in MANET. Hence, it is necessary to develop an appropriate security mechanism for the data MANET… More >

  • Open Access

    ARTICLE

    Hybrid of Distributed Cumulative Histograms and Classification Model for Attack Detection

    Mostafa Nassar1, Anas M. Ali1,2, Walid El-Shafai1,3, Adel Saleeb1, Fathi E. Abd El-Samie1, Naglaa F. Soliman4, Hussah Nasser AlEisa5,*, Hossam Eldin H. Ahmed1

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2235-2247, 2023, DOI:10.32604/csse.2023.032156

    Abstract Traditional security systems are exposed to many various attacks, which represents a major challenge for the spread of the Internet in the future. Innovative techniques have been suggested for detecting attacks using machine learning and deep learning. The significant advantage of deep learning is that it is highly efficient, but it needs a large training time with a lot of data. Therefore, in this paper, we present a new feature reduction strategy based on Distributed Cumulative Histograms (DCH) to distinguish between dataset features to locate the most effective features. Cumulative histograms assess the dataset instance patterns of the applied features… More >

  • Open Access

    ARTICLE

    An Intelligent Hazardous Waste Detection and Classification Model Using Ensemble Learning Techniques

    Mesfer Al Duhayyim1,*, Saud S. Alotaibi2, Shaha Al-Otaibi3, Fahd N. Al-Wesabi4, Mahmoud Othman5, Ishfaq Yaseen6, Mohammed Rizwanullah6, Abdelwahed Motwakel6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3315-3332, 2023, DOI:10.32604/cmc.2023.033250

    Abstract Proper waste management models using recent technologies like computer vision, machine learning (ML), and deep learning (DL) are needed to effectively handle the massive quantity of increasing waste. Therefore, waste classification becomes a crucial topic which helps to categorize waste into hazardous or non-hazardous ones and thereby assist in the decision making of the waste management process. This study concentrates on the design of hazardous waste detection and classification using ensemble learning (HWDC-EL) technique to reduce toxicity and improve human health. The goal of the HWDC-EL technique is to detect the multiple classes of wastes, particularly hazardous and non-hazardous wastes.… More >

  • Open Access

    ARTICLE

    Chained Dual-Generative Adversarial Network: A Generalized Defense Against Adversarial Attacks

    Amitoj Bir Singh1, Lalit Kumar Awasthi1, Urvashi1, Mohammad Shorfuzzaman2, Abdulmajeed Alsufyani2, Mueen Uddin3,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2541-2555, 2023, DOI:10.32604/cmc.2023.032795

    Abstract Neural networks play a significant role in the field of image classification. When an input image is modified by adversarial attacks, the changes are imperceptible to the human eye, but it still leads to misclassification of the images. Researchers have demonstrated these attacks to make production self-driving cars misclassify Stop Road signs as 45 Miles Per Hour (MPH) road signs and a turtle being misclassified as AK47. Three primary types of defense approaches exist which can safeguard against such attacks i.e., Gradient Masking, Robust Optimization, and Adversarial Example Detection. Very few approaches use Generative Adversarial Networks (GAN) for Defense against… More >

  • Open Access

    ARTICLE

    Improved Bat Algorithm with Deep Learning-Based Biomedical ECG Signal Classification Model

    Marwa Obayya1, Nadhem NEMRI2, Lubna A. Alharbi3, Mohamed K. Nour4, Mrim M. Alnfiai5, Mohammed Abdullah Al-Hagery6, Nermin M. Salem7, Mesfer Al Duhayyim8,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3151-3166, 2023, DOI:10.32604/cmc.2023.032765

    Abstract With new developments experienced in Internet of Things (IoT), wearable, and sensing technology, the value of healthcare services has enhanced. This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare. Bio-medical Electrocardiogram (ECG) signals are generally utilized in examination and diagnosis of Cardiovascular Diseases (CVDs) since it is quick and non-invasive in nature. Due to increasing number of patients in recent years, the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients. In such scenario computer-assisted automated diagnostic tools are important for classification of ECG signals. The current study… More >

  • Open Access

    ARTICLE

    Optimal Deep Transfer Learning Based Colorectal Cancer Detection and Classification Model

    Mahmoud Ragab1,2,3,*, Maged Mostafa Mahmoud4,5,6, Amer H. Asseri2,7, Hani Choudhry2,7, Haitham A. Yacoub8

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3279-3295, 2023, DOI:10.32604/cmc.2023.031037

    Abstract Colorectal carcinoma (CRC) is one such dispersed cancer globally and also prominent one in causing cancer-based death. Conventionally, pathologists execute CRC diagnosis through visible scrutinizing under the microscope the resected tissue samples, stained and fixed through Haematoxylin and Eosin (H&E). The advancement of graphical processing systems has resulted in high potentiality for deep learning (DL) techniques in interpretating visual anatomy from high resolution medical images. This study develops a slime mould algorithm with deep transfer learning enabled colorectal cancer detection and classification (SMADTL-CCDC) algorithm. The presented SMADTL-CCDC technique intends to appropriately recognize the occurrence of colorectal cancer. To accomplish this,… More >

  • Open Access

    ARTICLE

    Optimal Deep Belief Network Enabled Malware Detection and Classification Model

    P. Pandi Chandran1,*, N. Hema Rajini2, M. Jeyakarthic3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3349-3364, 2023, DOI:10.32604/iasc.2023.029946

    Abstract Cybercrime has increased considerably in recent times by creating new methods of stealing, changing, and destroying data in daily lives. Portable Document Format (PDF) has been traditionally utilized as a popular way of spreading malware. The recent advances of machine learning (ML) and deep learning (DL) models are utilized to detect and classify malware. With this motivation, this study focuses on the design of mayfly optimization with a deep belief network for PDF malware detection and classification (MFODBN-MDC) technique. The major intention of the MFODBN-MDC technique is for identifying and classifying the presence of malware exist in the PDFs. The… More >

Displaying 11-20 on page 2 of 54. Per Page