Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

    Anis Ben Ghorbal1,*, Azedine Grine1, Marwa M. Eid2,3,*, El-Sayed M. El-Kenawy4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2001-2028, 2025, DOI:10.32604/cmes.2025.068212 - 31 August 2025

    Abstract Preterm birth remains a leading cause of neonatal complications and highlights the need for early and accurate prediction techniques to improve both fetal and maternal health outcomes. This study introduces a hybrid approach integrating Long Short-Term Memory (LSTM) networks with the Hybrid Greylag Goose and Particle Swarm Optimization (GGPSO) algorithm to optimize preterm birth classification using Electrohysterogram signals. The dataset consists of 58 samples of 1000-second-long Electrohysterogram recordings, capturing key physiological features such as contraction patterns, entropy, and statistical variations. Statistical analysis and feature selection methods are applied to identify the most relevant predictors and More > Graphic Abstract

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

  • Open Access

    REVIEW

    Transformers for Multi-Modal Image Analysis in Healthcare

    Sameera V Mohd Sagheer1,*, Meghana K H2, P M Ameer3, Muneer Parayangat4, Mohamed Abbas4

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4259-4297, 2025, DOI:10.32604/cmc.2025.063726 - 30 July 2025

    Abstract Integrating multiple medical imaging techniques, including Magnetic Resonance Imaging (MRI), Computed Tomography, Positron Emission Tomography (PET), and ultrasound, provides a comprehensive view of the patient health status. Each of these methods contributes unique diagnostic insights, enhancing the overall assessment of patient condition. Nevertheless, the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution, data collection methods, and noise levels. While traditional models like Convolutional Neural Networks (CNNs) excel in single-modality tasks, they struggle to handle multi-modal complexities, lacking the capacity to model global relationships. This research presents a novel approach for… More >

  • Open Access

    REVIEW

    A Narrative Review of Artificial Intelligence in Medical Diagnostics

    Takanobu Hirosawa*, Taro Shimizu

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 3919-3944, 2025, DOI:10.32604/cmc.2025.063803 - 19 May 2025

    Abstract Artificial Intelligence (AI) is fundamentally transforming medical diagnostics, driving advancements that enhance accuracy, efficiency, and personalized patient care. This narrative review explores AI integration across various diagnostic domains, emphasizing its role in improving clinical decision-making. The evolution of medical diagnostics from traditional observational methods to sophisticated imaging, laboratory tests, and molecular diagnostics lays the foundation for understanding AI’s impact. Modern diagnostics are inherently complex, influenced by multifactorial disease presentations, patient variability, cognitive biases, and systemic factors like data overload and interdisciplinary collaboration. AI-enhanced clinical decision support systems utilize both knowledge-based and non-knowledge-based approaches, employing machine… More >

  • Open Access

    ARTICLE

    Optimizing the Clinical Decision Support System (CDSS) by Using Recurrent Neural Network (RNN) Language Models for Real-Time Medical Query Processing

    Israa Ibraheem Al Barazanchi1,2,*, Wahidah Hashim1, Reema Thabit1, Mashary Nawwaf Alrasheedy3,4, Abeer Aljohan5, Jongwoon Park6, Byoungchol Chang6

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4787-4832, 2024, DOI:10.32604/cmc.2024.055079 - 19 December 2024

    Abstract This research aims to enhance Clinical Decision Support Systems (CDSS) within Wireless Body Area Networks (WBANs) by leveraging advanced machine learning techniques. Specifically, we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) layers and echo state cells. These models are tailored to improve diagnostic precision, particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases. Traditional diagnostic methods and existing CDSS frameworks often fall short in managing complex, sequential medical data, struggling with long-term dependencies and data… More >

  • Open Access

    ARTICLE

    A Study on the Explainability of Thyroid Cancer Prediction: SHAP Values and Association-Rule Based Feature Integration Framework

    Sujithra Sankar1,*, S. Sathyalakshmi2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3111-3138, 2024, DOI:10.32604/cmc.2024.048408 - 15 May 2024

    Abstract In the era of advanced machine learning techniques, the development of accurate predictive models for complex medical conditions, such as thyroid cancer, has shown remarkable progress. Accurate predictive models for thyroid cancer enhance early detection, improve resource allocation, and reduce overtreatment. However, the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency. This paper proposes a novel association-rule based feature-integrated machine learning model which shows better classification and prediction accuracy than present state-of-the-art models. Our study also focuses on the application of SHapley Additive exPlanations (SHAP) values as… More >

  • Open Access

    ARTICLE

    A Novel Krill Herd Based Random Forest Algorithm for Monitoring Patient Health

    Md. Moddassir Alam1, Md Mottahir Alam2, Muhammad Moinuddin2,3, Mohammad Tauheed Ahmad4, Jabir Hakami5, Anis Ahmad Chaudhary6, Asif Irshad Khan7, Tauheed Khan Mohd8,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4553-4571, 2023, DOI:10.32604/cmc.2023.032118 - 31 March 2023

    Abstract Artificial Intelligence (AI) is finding increasing application in healthcare monitoring. Machine learning systems are utilized for monitoring patient health through the use of IoT sensor, which keep track of the physiological state by way of various health data. Thus, early detection of any disease or derangement can aid doctors in saving patients’ lives. However, there are some challenges associated with predicting health status using the common algorithms, such as time requirements, chances of errors, and improper classification. We propose an Artificial Krill Herd based on the Random Forest (AKHRF) technique for monitoring patients’ health and… More >

  • Open Access

    ARTICLE

    Framework for a Computer-Aided Treatment Prediction (CATP) System for Breast Cancer

    Emad Abd Al Rahman1, Nur Intan Raihana Ruhaiyem1,*, Majed Bouchahma2, Kamarul Imran Musa3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3007-3028, 2023, DOI:10.32604/iasc.2023.032580 - 15 March 2023

    Abstract This study offers a framework for a breast cancer computer-aided treatment prediction (CATP) system. The rising death rate among women due to breast cancer is a worldwide health concern that can only be addressed by early diagnosis and frequent screening. Mammography has been the most utilized breast imaging technique to date. Radiologists have begun to use computer-aided detection and diagnosis (CAD) systems to improve the accuracy of breast cancer diagnosis by minimizing human errors. Despite the progress of artificial intelligence (AI) in the medical field, this study indicates that systems that can anticipate a treatment… More >

  • Open Access

    ARTICLE

    Modelling an Efficient Clinical Decision Support System for Heart Disease Prediction Using Learning and Optimization Approaches

    Sridharan Kannan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 677-694, 2022, DOI:10.32604/cmes.2022.018580 - 14 March 2022

    Abstract With the worldwide analysis, heart disease is considered a significant threat and extensively increases the mortality rate. Thus, the investigators mitigate to predict the occurrence of heart disease in an earlier stage using the design of a better Clinical Decision Support System (CDSS). Generally, CDSS is used to predict the individuals’ heart disease and periodically update the condition of the patients. This research proposes a novel heart disease prediction system with CDSS composed of a clustering model for noise removal to predict and eliminate outliers. Here, the Synthetic Over-sampling prediction model is integrated with the… More >

  • Open Access

    ARTICLE

    Big Data Analytics with OENN Based Clinical Decision Support System

    Thejovathi Murari1, L. Prathiba2, Kranthi Kumar Singamaneni3,*, D. Venu4, Vinay Kumar Nassa5, Rachna Kohar6, Satyajit Sidheshwar Uparkar7

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1241-1256, 2022, DOI:10.32604/iasc.2022.020203 - 22 September 2021

    Abstract In recent times, big data analytics using Machine Learning (ML) possesses several merits for assimilation and validation of massive quantity of complicated healthcare data. ML models are found to be scalable and flexible over conventional statistical tools, which makes them suitable for risk stratification, diagnosis, classification and survival prediction. In spite of these benefits, the utilization of ML in healthcare sector faces challenges which necessitate massive training data, data preprocessing, model training and parameter optimization based on the clinical problem. To resolve these issues, this paper presents new Big Data Analytics with Optimal Elman Neural… More >

  • Open Access

    ARTICLE

    Energy Efficient Cluster Based Clinical Decision Support System in IoT Environment

    C. Rajinikanth1, P. Selvaraj2, Mohamed Yacin Sikkandar3, T. Jayasankar4, Seifedine Kadry5, Yunyoung Nam6,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2013-2029, 2021, DOI:10.32604/cmc.2021.018719 - 21 July 2021

    Abstract Internet of Things (IoT) has become a major technological development which offers smart infrastructure for the cloud-edge services by the interconnection of physical devices and virtual things among mobile applications and embedded devices. The e-healthcare application solely depends on the IoT and cloud computing environment, has provided several characteristics and applications. Prior research works reported that the energy consumption for transmission process is significantly higher compared to sensing and processing, which led to quick exhaustion of energy. In this view, this paper introduces a new energy efficient cluster enabled clinical decision support system (EEC-CDSS) for… More >

Displaying 1-10 on page 1 of 10. Per Page