Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (142)
  • Open Access

    ARTICLE

    An Efficient Attention-Based Strategy for Anomaly Detection in Surveillance Video

    Sareer Ul Amin1, Yongjun Kim2, Irfan Sami3, Sangoh Park1,*, Sanghyun Seo4,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3939-3958, 2023, DOI:10.32604/csse.2023.034805 - 03 April 2023

    Abstract In the present technological world, surveillance cameras generate an immense amount of video data from various sources, making its scrutiny tough for computer vision specialists. It is difficult to search for anomalous events manually in these massive video records since they happen infrequently and with a low probability in real-world monitoring systems. Therefore, intelligent surveillance is a requirement of the modern day, as it enables the automatic identification of normal and aberrant behavior using artificial intelligence and computer vision technologies. In this article, we introduce an efficient Attention-based deep-learning approach for anomaly detection in surveillance… More >

  • Open Access

    ARTICLE

    A Computer Vision-Based System for Metal Sheet Pick Counting

    Jirasak Ji, Warut Pannakkong*, Jirachai Buddhakulsomsiri

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3643-3656, 2023, DOI:10.32604/cmc.2023.037507 - 31 March 2023

    Abstract Inventory counting is crucial to manufacturing industries in terms of inventory management, production, and procurement planning. Many companies currently require workers to manually count and track the status of materials, which are repetitive and non-value-added activities but incur significant costs to the companies as well as mental fatigue to the employees. This research aims to develop a computer vision system that can automate the material counting activity without applying any marker on the material. The type of material of interest is metal sheet, whose shape is simple, a large rectangular shape, yet difficult to detect. More >

  • Open Access

    ARTICLE

    Semantic Document Layout Analysis of Handwritten Manuscripts

    Emad Sami Jaha*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2805-2831, 2023, DOI:10.32604/cmc.2023.036169 - 31 March 2023

    Abstract A document layout can be more informative than merely a document’s visual and structural appearance. Thus, document layout analysis (DLA) is considered a necessary prerequisite for advanced processing and detailed document image analysis to be further used in several applications and different objectives. This research extends the traditional approaches of DLA and introduces the concept of semantic document layout analysis (SDLA) by proposing a novel framework for semantic layout analysis and characterization of handwritten manuscripts. The proposed SDLA approach enables the derivation of implicit information and semantic characteristics, which can be effectively utilized in dozens… More >

  • Open Access

    ARTICLE

    Hand Gesture Recognition for Disabled People Using Bayesian Optimization with Transfer Learning

    Fadwa Alrowais1, Radwa Marzouk2,3, Fahd N. Al-Wesabi4,*, Anwer Mustafa Hilal5

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3325-3342, 2023, DOI:10.32604/iasc.2023.036354 - 15 March 2023

    Abstract Sign language recognition can be treated as one of the efficient solutions for disabled people to communicate with others. It helps them to convey the required data by the use of sign language with no issues. The latest developments in computer vision and image processing techniques can be accurately utilized for the sign recognition process by disabled people. American Sign Language (ASL) detection was challenging because of the enhancing intraclass similarity and higher complexity. This article develops a new Bayesian Optimization with Deep Learning-Driven Hand Gesture Recognition Based Sign Language Communication (BODL-HGRSLC) for Disabled People.… More >

  • Open Access

    ARTICLE

    Real-Time Indoor Path Planning Using Object Detection for Autonomous Flying Robots

    Onder Alparslan*, Omer Cetin

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3355-3370, 2023, DOI:10.32604/iasc.2023.035689 - 15 March 2023

    Abstract Unknown closed spaces are a big challenge for the navigation of robots since there are no global and pre-defined positioning options in the area. One of the simplest and most efficient algorithms, the artificial potential field algorithm (APF), may provide real-time navigation in those places but fall into local minimum in some cases. To overcome this problem and to present alternative escape routes for a robot, possible crossing points in buildings may be detected by using object detection and included in the path planning algorithm. This study utilized a proposed sensor fusion method and an… More >

  • Open Access

    ARTICLE

    Automated Disabled People Fall Detection Using Cuckoo Search with Mobile Networks

    Mesfer Al Duhayyim*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2473-2489, 2023, DOI:10.32604/iasc.2023.033585 - 15 March 2023

    Abstract Falls are the most common concern among older adults or disabled people who use scooters and wheelchairs. The early detection of disabled persons’ falls is required to increase the living rate of an individual or provide support to them whenever required. In recent times, the arrival of the Internet of Things (IoT), smartphones, Artificial Intelligence (AI), wearables and so on make it easy to design fall detection mechanisms for smart homecare. The current study develops an Automated Disabled People Fall Detection using Cuckoo Search Optimization with Mobile Networks (ADPFD-CSOMN) model. The proposed model’s major aim… More >

  • Open Access

    ARTICLE

    Enhanced Deep Learning for Detecting Suspicious Fall Event in Video Data

    Madhuri Agrawal*, Shikha Agrawal

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2653-2667, 2023, DOI:10.32604/iasc.2023.033493 - 15 March 2023

    Abstract

    Suspicious fall events are particularly significant hazards for the safety of patients and elders. Recently, suspicious fall event detection has become a robust research case in real-time monitoring. This paper aims to detect suspicious fall events during video monitoring of multiple people in different moving backgrounds in an indoor environment; it is further proposed to use a deep learning method known as Long Short Term Memory (LSTM) by introducing visual attention-guided mechanism along with a bi-directional LSTM model. This method contributes essential information on the temporal and spatial locations of ‘suspicious fall’ events in learning the

    More >

  • Open Access

    ARTICLE

    An Efficient Indoor Localization Based on Deep Attention Learning Model

    Amr Abozeid1,*, Ahmed I. Taloba1,2, Rasha M. Abd El-Aziz1,3, Alhanoof Faiz Alwaghid1, Mostafa Salem3, Ahmed Elhadad1,4

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2637-2650, 2023, DOI:10.32604/csse.2023.037761 - 09 February 2023

    Abstract Indoor localization methods can help many sectors, such as healthcare centers, smart homes, museums, warehouses, and retail malls, improve their service areas. As a result, it is crucial to look for low-cost methods that can provide exact localization in indoor locations. In this context, image-based localization methods can play an important role in estimating both the position and the orientation of cameras regarding an object. Image-based localization faces many issues, such as image scale and rotation variance. Also, image-based localization’s accuracy and speed (latency) are two critical factors. This paper proposes an efficient 6-DoF deep-learning… More >

  • Open Access

    ARTICLE

    Earthworm Optimization with Improved SqueezeNet Enabled Facial Expression Recognition Model

    N. Sharmili1, Saud Yonbawi2, Sultan Alahmari3, E. Laxmi Lydia4, Mohamad Khairi Ishak5, Hend Khalid Alkahtani6,*, Ayman Aljarbouh7, Samih M. Mostafa8

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2247-2262, 2023, DOI:10.32604/csse.2023.036377 - 09 February 2023

    Abstract Facial expression recognition (FER) remains a hot research area among computer vision researchers and still becomes a challenge because of high intra-class variations. Conventional techniques for this problem depend on hand-crafted features, namely, LBP, SIFT, and HOG, along with that a classifier trained on a database of videos or images. Many execute perform well on image datasets captured in a controlled condition; however not perform well in the more challenging dataset, which has partial faces and image variation. Recently, many studies presented an endwise structure for facial expression recognition by utilizing DL methods. Therefore, this… More >

  • Open Access

    ARTICLE

    Deep Learning Based Face Mask Detection in Religious Mass Gathering During COVID-19 Pandemic

    Abdullah S. AL-Malaise AL-Ghamdi1,2,3, Sultanah M. Alshammari3,4, Mahmoud Ragab3,5,6,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1863-1877, 2023, DOI:10.32604/csse.2023.035869 - 09 February 2023

    Abstract Notwithstanding the religious intention of billions of devotees, the religious mass gathering increased major public health concerns since it likely became a huge super spreading event for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most attendees ignored preventive measures, namely maintaining physical distance, practising hand hygiene, and wearing facemasks. Wearing a face mask in public areas protects people from spreading COVID-19. Artificial intelligence (AI) based on deep learning (DL) and machine learning (ML) could assist in fighting covid-19 in several ways. This study introduces a new deep learning-based Face Mask Detection in Religious Mass… More >

Displaying 71-80 on page 8 of 142. Per Page