Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Novel Computer-Aided Diagnosis System for the Early Detection of Alzheimer’s Disease

    Meshal Alharbi, Shabana R. Ziyad*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5483-5505, 2023, DOI:10.32604/cmc.2023.032341

    Abstract Aging is a natural process that leads to debility, disease, and dependency. Alzheimer’s disease (AD) causes degeneration of the brain cells leading to cognitive decline and memory loss, as well as dependence on others to fulfill basic daily needs. AD is the major cause of dementia. Computer-aided diagnosis (CADx) tools aid medical practitioners in accurately identifying diseases such as AD in patients. This study aimed to develop a CADx tool for the early detection of AD using the Intelligent Water Drop (IWD) algorithm and the Random Forest (RF) classifier. The IWD algorithm an efficient feature… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Fused Learning Approach to Segregate Infectious Diseases

    Jawad Rasheed1,*, Shtwai Alsubai2

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4239-4259, 2023, DOI:10.32604/cmc.2023.031969

    Abstract Humankind is facing another deadliest pandemic of all times in history, caused by COVID-19. Apart from this challenging pandemic, World Health Organization (WHO) considers tuberculosis (TB) as a preeminent infectious disease due to its high infection rate. Generally, both TB and COVID-19 severely affect the lungs, thus hardening the job of medical practitioners who can often misidentify these diseases in the current situation. Therefore, the time of need calls for an immediate and meticulous automatic diagnostic tool that can accurately discriminate both diseases. As one of the preliminary smart health systems that examine three clinical… More >

  • Open Access

    ARTICLE

    Latent Space Representational Learning of Deep Features for Acute Lymphoblastic Leukemia Diagnosis

    Ghada Emam Atteia*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 361-376, 2023, DOI:10.32604/csse.2023.029597

    Abstract Acute Lymphoblastic Leukemia (ALL) is a fatal malignancy that is featured by the abnormal increase of immature lymphocytes in blood or bone marrow. Early prognosis of ALL is indispensable for the effectual remediation of this disease. Initial screening of ALL is conducted through manual examination of stained blood smear microscopic images, a process which is time-consuming and prone to errors. Therefore, many deep learning-based computer-aided diagnosis (CAD) systems have been established to automatically diagnose ALL. This paper proposes a novel hybrid deep learning system for ALL diagnosis in blood smear images. The introduced system integrates… More >

  • Open Access

    ARTICLE

    Gaussian Optimized Deep Learning-based Belief Classification Model for Breast Cancer Detection

    Areej A. Malibari1, Marwa Obayya2, Mohamed K. Nour3, Amal S. Mehanna4, Manar Ahmed Hamza5,*, Abu Sarwar Zamani5, Ishfaq Yaseen5, Abdelwahed Motwakel5

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4123-4138, 2022, DOI:10.32604/cmc.2022.030492

    Abstract With the rapid increase of new cases with an increased mortality rate, cancer is considered the second and most deadly disease globally. Breast cancer is the most widely affected cancer worldwide, with an increased death rate percentage. Due to radiologists’ processing of mammogram images, many computer-aided diagnoses have been developed to detect breast cancer. Early detection of breast cancer will reduce the death rate worldwide. The early diagnosis of breast cancer using the developed computer-aided diagnosis (CAD) systems still needed to be enhanced by incorporating innovative deep learning technologies to improve the accuracy and sensitivity… More >

  • Open Access

    ARTICLE

    Pre-Trained Deep Neural Network-Based Computer-Aided Breast Tumor Diagnosis Using ROI Structures

    Venkata Sunil Srikanth*, S. Krithiga

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 63-78, 2023, DOI:10.32604/iasc.2023.023474

    Abstract Deep neural network (DNN) based computer-aided breast tumor diagnosis (CABTD) method plays a vital role in the early detection and diagnosis of breast tumors. However, a Brightness mode (B-mode) ultrasound image derives training feature samples that make closer isolation toward the infection part. Hence, it is expensive due to a meta-heuristic search of features occupying the global region of interest (ROI) structures of input images. Thus, it may lead to the high computational complexity of the pre-trained DNN-based CABTD method. This paper proposes a novel ensemble pre-trained DNN-based CABTD method using global- and local-ROI-structures of… More >

  • Open Access

    ARTICLE

    Breast Calcifications and Histopathological Analysis on Tumour Detection by CNN

    D. Banumathy1,*, Osamah Ibrahim Khalaf2, Carlos Andrés Tavera Romero3, P. Vishnu Raja4, Dilip Kumar Sharma5

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 595-612, 2023, DOI:10.32604/csse.2023.025611

    Abstract The most salient argument that needs to be addressed universally is Early Breast Cancer Detection (EBCD), which helps people live longer lives. The Computer-Aided Detection (CADs)/Computer-Aided Diagnosis (CADx) system is indeed a software automation tool developed to assist the health professions in Breast Cancer Detection and Diagnosis (BCDD) and minimise mortality by the use of medical histopathological image classification in much less time. This paper purposes of examining the accuracy of the Convolutional Neural Network (CNN), which can be used to perceive breast malignancies for initial breast cancer detection to determine which strategy is efficient… More >

  • Open Access

    ARTICLE

    Multi-View Auxiliary Diagnosis Algorithm for Lung Nodules

    Shi Qiu1, Bin Li2,*, Tao Zhou3, Feng Li4, Ting Liang5

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4897-4910, 2022, DOI:10.32604/cmc.2022.026855

    Abstract Lung is an important organ of human body. More and more people are suffering from lung diseases due to air pollution. These diseases are usually highly infectious. Such as lung tuberculosis, novel coronavirus COVID-19, etc. Lung nodule is a kind of high-density globular lesion in the lung. Physicians need to spend a lot of time and energy to observe the computed tomography image sequences to make a diagnosis, which is inefficient. For this reason, the use of computer-assisted diagnosis of lung nodules has become the current main trend. In the process of computer-aided diagnosis, how… More >

  • Open Access

    ARTICLE

    Intelligent Deep Transfer Learning Based Malaria Parasite Detection and Classification Model Using Biomedical Image

    Ahmad Alassaf, Mohamed Yacin Sikkandar*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5273-5285, 2022, DOI:10.32604/cmc.2022.025577

    Abstract Malaria is a severe disease caused by Plasmodium parasites, which can be detected through blood smear images. The early identification of the disease can effectively reduce the severity rate. Deep learning (DL) models can be widely employed to analyze biomedical images, thereby minimizing the misclassification rate. With this objective, this study developed an intelligent deep-transfer-learning-based malaria parasite detection and classification (IDTL-MPDC) model on blood smear images. The proposed IDTL-MPDC technique aims to effectively determine the presence of malarial parasites in blood smear images. In addition, the IDTL-MPDC technique derives median filtering (MF) as a pre-processing… More >

  • Open Access

    ARTICLE

    Transfer Learning-based Computer-aided Diagnosis System for Predicting Grades of Diabetic Retinopathy

    Qaisar Abbas1,*, Mostafa E. A. Ibrahim1,2, Abdul Rauf Baig1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4573-4590, 2022, DOI:10.32604/cmc.2022.023670

    Abstract Diabetic retinopathy (DR) diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features. This task is very difficult for ophthalmologists and time-consuming. Therefore, many computer-aided diagnosis (CAD) systems were developed to automate this screening process of DR. In this paper, a CAD-DR system is proposed based on preprocessing and a pre-train transfer learning-based convolutional neural network (PCNN) to recognize the five stages of DR through retinal fundus images. To develop this CAD-DR system, a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related… More >

  • Open Access

    ARTICLE

    Breast Tumor Computer-Aided Detection System Based on Magnetic Resonance Imaging Using Convolutional Neural Network

    Jing Lu1, Yan Wu2,#, Mingyan Hu1, Yao Xiong1, Yapeng Zhou1, Ziliang Zhao1, Liutong Shang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 365-377, 2022, DOI:10.32604/cmes.2021.017897

    Abstract Background: The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue. Early diagnosis of tumors has become the most effective way to prevent breast cancer. Method: For distinguishing between tumor and non-tumor in MRI, a new type of computer-aided detection CAD system for breast tumors is designed in this paper. The CAD system was constructed using three networks, namely, the VGG16, Inception V3, and ResNet50. Then, the influence of the convolutional neural network second migration on the experimental results was further explored in the VGG16 system. Result: CAD system built based… More >

Displaying 11-20 on page 2 of 28. Per Page