Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    Physics Based Digital Twin Modelling from Theory to Concept Implementation Using Coiled Springs Used in Suspension Systems

    Mohamed Ammar1,*, Alireza Mousavi1, Hamed Al-Raweshidy2,*

    Digital Engineering and Digital Twin, Vol.2, pp. 1-31, 2024, DOI:10.32604/dedt.2023.044930

    Abstract The advent of technology around the globe based on the Internet of Things, Cloud Computing, Big Data, Cyber-Physical Systems, and digitalisation. This advancement introduced industry 4.0. It is challenging to measure how enterprises adopt the new technologies. Industry 4.0 introduced Digital Twins, given that no specific terms or definitions are given to Digital Twins still challenging to define or conceptualise the Digital Twins. Many academics and industries still use old technologies, naming it Digital Twins. This young technology is in danger of reaching the plateau despite the immense benefit to sectors. This paper proposes a novel and unique definition for… More >

  • Open Access

    ARTICLE

    Wireless Self-Powered Vibration Sensor System for Intelligent Spindle Monitoring

    Lei Yu1, Hongjun Wang1,*, Yubin Yue1, Shucong Liu1, Xiangxiang Mao2, Fengshou Gu3

    Structural Durability & Health Monitoring, Vol.17, No.4, pp. 315-336, 2023, DOI:10.32604/sdhm.2022.024899

    Abstract In recent years, high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year. During the machining process, the high-end equipment failure may have a great impact on the product quality. It is necessary to monitor the status of equipment and to predict fault diagnosis. At present, most of the condition monitoring devices for mechanical equipment have problems of large size, low precision and low energy utilization. A wireless self-powered intelligent spindle vibration acceleration sensor system based on piezoelectric energy harvesting is proposed. Based on rotor sensing technology, a sensor is… More >

  • Open Access

    ARTICLE

    An Efficient IIoT-Based Smart Sensor Node for Predictive Maintenance of Induction Motors

    Majida Kazmi1,*, Maria Tabasum Shoaib1,2, Arshad Aziz3, Hashim Raza Khan1,2, Saad Ahmed Qazi1,2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 255-272, 2023, DOI:10.32604/csse.2023.038464

    Abstract Predictive maintenance is a vital aspect of the industrial sector, and the use of Industrial Internet of Things (IIoT) sensor nodes is becoming increasingly popular for detecting motor faults and monitoring motor conditions. An integrated approach for acquiring, processing, and wirelessly transmitting a large amount of data in predictive maintenance applications remains a significant challenge. This study presents an IIoT-based sensor node for industrial motors. The sensor node is designed to acquire vibration data on the radial and axial axes of the motor and utilizes a hybrid approach for efficient data processing via edge and cloud platforms. The initial step… More >

  • Open Access

    ARTICLE

    Embedded System Development for Detection of Railway Track Surface Deformation Using Contour Feature Algorithm

    Tarique Rafique Memon1,2,*, Tayab Din Memon3,4, Imtiaz Hussain Kalwar5, Bhawani Shankar Chowdhry1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2461-2477, 2023, DOI:10.32604/cmc.2023.035413

    Abstract Derailment of trains is not unusual all around the world, especially in developing countries, due to unidentified track or rolling stock faults that cause massive casualties each year. For this purpose, a proper condition monitoring system is essential to avoid accidents and heavy losses. Generally, the detection and classification of railway track surface faults in real-time requires massive computational processing and memory resources and is prone to a noisy environment. Therefore, in this paper, we present the development of a novel embedded system prototype for condition monitoring of railway track. The proposed prototype system works in real-time by acquiring railway… More >

  • Open Access

    REVIEW

    A Review about Wireless Sensor Networks and the Internet of Things

    Amarjit Singh*

    Journal on Internet of Things, Vol.4, No.2, pp. 69-73, 2022, DOI:10.32604/jiot.2022.026170

    Abstract Wireless sensor networks (WSNs) are created and affect our daily lives. You can find applications in various fields such as health, accident, life, manufacturing, production management, network management and many other fields. WSN now connects to the Internet of Things, connects the sensor to the Internet, and then uses it for collaboration and collaboration. However, when WSN is part of the internet we need to be able to study and analyze related terms. In this article, we’re going to look at different ways to get WSN online and identify the challenges that address in future as well. More >

  • Open Access

    ARTICLE

    Data-Driven Approach for Condition Monitoring and Improving Power Output of Photovoltaic Systems

    Nebras M. Sobahi1,*, Ahteshamul Haque2, V S Bharath Kurukuru2, Md. Mottahir Alam1, Asif Irshad Khan3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5757-5776, 2023, DOI:10.32604/cmc.2022.028340

    Abstract Increasing renewable energy targets globally has raised the requirement for the efficient and profitable operation of solar photovoltaic (PV) systems. In light of this requirement, this paper provides a path for evaluating the operating condition and improving the power output of the PV system in a grid integrated environment. To achieve this, different types of faults in grid-connected PV systems (GCPVs) and their impact on the energy loss associated with the electrical network are analyzed. A data-driven approach using neural networks (NNs) is proposed to achieve root cause analysis and localize the fault to the component level in the system.… More >

  • Open Access

    ARTICLE

    Development of IoT-Based Condition Monitoring System for Bridges

    Sheetal A. Singh, Suresh S. Balpande*

    Sound & Vibration, Vol.56, No.3, pp. 209-220, 2022, DOI:10.32604/sv.2022.014518

    Abstract As of April 2019, India has 1,42,126 kilometres of National Highways and 67,368 kilometres of railway tracks that reach even the most remote parts of the country. Bridges are critical for both passenger and freight movement in the country. Because bridges play such an important part in the transportation system, their safety and upkeep must be prioritized. Manual Condition Monitoring has the disadvantage of being sluggish, unreliable, and ineffi- cient. The Internet of Things has given structural monitoring a boost. Significant decreases in the cost of electronics and connection, together with the expansion of cloud platforms, have made it possible… More >

  • Open Access

    ARTICLE

    Fault Detection and Identification Using Deep Learning Algorithms in Induction Motors

    Majid Hussain1,2,*, Tayab Din Memon3,4, Imtiaz Hussain5, Zubair Ahmed Memon3, Dileep Kumar2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 435-470, 2022, DOI:10.32604/cmes.2022.020583

    Abstract Owing to the 4.0 industrial revolution condition monitoring maintenance is widely accepted as a useful approach to avoiding plant disturbances and shutdown. Recently, Motor Current Signature Analysis (MCSA) is widely reported as a condition monitoring technique in the detection and identification of individual and multiple Induction Motor (IM) faults. However, checking the fault detection and classification with deep learning models and its comparison among themselves or conventional approaches is rarely reported in the literature. Therefore, in this work, we present the detection and identification of induction motor faults with MCSA and three Deep Learning (DL) models namely MLP, LSTM, and… More >

  • Open Access

    ARTICLE

    Single Point Cutting Tool Fault Diagnosis in Turning Operation Using Reduced Error Pruning Tree Classifier

    E. Akshay1, V. Sugumaran1,*, M. Elangovan2

    Structural Durability & Health Monitoring, Vol.16, No.3, pp. 255-270, 2022, DOI:10.32604/sdhm.2022.0271

    Abstract Tool wear is inevitable in daily machining process since metal cutting process involves the chip rubbing the tool surface after it has been cut by the tool edge. Tool wear dominantly influences the deterioration of surface finish, geometric and dimensional tolerances of the workpiece. Moreover, for complete utilization of cutting tools and reduction of machine downtime during the machining process, it becomes necessary to understand the development of tool wear and predict its status before happening. In this study, tool condition monitoring system was used to monitor the behavior of a single point cutting tool to predict flank wear. A… More >

  • Open Access

    ARTICLE

    Condition Monitoring and Maintenance Management with Grid-Connected Renewable Energy Systems

    Md. Mottahir Alam1,*, Ahteshamul Haque2, Mohammed Ali Khan3, Nebras M. Sobahi1, Ibrahim Mustafa Mehedi1,4, Asif Irshad Khan5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3999-4017, 2022, DOI:10.32604/cmc.2022.026353

    Abstract The shift towards the renewable energy market for carbon-neutral power generation has encouraged different governments to come up with a plan of action. But with the endorsement of renewable energy for harsh environmental conditions like sand dust and snow, monitoring and maintenance are a few of the prime concerns. These problems were addressed widely in the literature, but most of the research has drawbacks due to long detection time, and high misclassification error. Hence to overcome these drawbacks, and to develop an accurate monitoring approach, this paper is motivated toward the understanding of primary failure concerning a grid-connected photovoltaic (PV)… More >

Displaying 1-10 on page 1 of 20. Per Page