Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method

    Xiaozhou Xia1, Changsheng Qin1, Guangda Lu2, Xin Gu1,*, Qing Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2257-2276, 2024, DOI:10.32604/cmes.2023.031238

    Abstract Accurate simulation of the cracking process caused by rust expansion of reinforced concrete (RC) structures plays an intuitive role in revealing the corrosion-induced failure mechanism. Considering the quasi-brittle fracture of concrete, the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model. The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load. Then, the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC. The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with… More >

  • Open Access

    ARTICLE

    DEVELOPMENT OF A 10 KW MICROWAVE APPLICATOR FOR THERMAL CRACKING OF LIGNITE BRIQUETTES

    Benjamin Lepersa,∗, Thomas Seitza, Guido Linka, John Jelonneka,b, Mark Zinkc

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.20

    Abstract A compact 10 kW microwave applicator operating at 2.45 GHz for fast volumetric heating and thermal cracking of lignite briquettes has been successfully designed and tested. In this paper, the applicator design and construction are presented together with a sequentially coupled electromagnetic, thermal-fluid and mechanical Comsol model. In a first step, this model allows us to calculate the power density inside the lignite material and the temperature distribution in the applicator for different water flow rates. In a second step, the total stress due to the thermal dilatation, the internal pressure inside the ceramic and the contact pressure from the… More >

  • Open Access

    PROCEEDINGS

    A Local to Global (L2G) Finite Element Method for Efficient and Robust Analysis of Arbitrary Cracking in 2D Solids

    Zhaoyang Ma1,*, Qingda Yang1, Xingming Guo1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.08941

    Abstract P This paper presents and validates a new local to global (L2G) FEM approach that can analyze multiple, interactive fracture processes in 2D solids with improved numerical efficiency and robustness. The method features: 1) forming local problems for individual and interactive cracks; and 2) parallel solving local problems and returning local solutions as part of the trial solution for global iteration. It has been demonstrated analytically (through a simple 1D problem) and numerically (through several benchmarking examples) that, the proposed method can substantially improve the robustness of the global solution process and significantly reduce the costly global iteration for convergence.… More >

  • Open Access

    PROCEEDINGS

    Segment Crack Formation and Density Regulation in Air Plasma Sprayed Coatings

    Liuyu Yang1, Peng Jiang1, Tiejun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010538

    Abstract Air Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) have been widely used in land-based gas engines for enhancing the high temperature performance due to their outstanding thermal insulation and high durability. Introducing the segment cracks into APS-TBCs to enhance its durability has been quite attractive approaches nowadays. Qualitative conclusions have been drawn to explore the mechanisms on segment crack formation in the past decades. This article acts as a quantitative study of segment crack formation and crack density regulation mechanism in APS Yttria-Stabilized Zirconia (YSZ) TBCs with experimental observations and analytical calculations. An in-situ stress measurement method is developed through… More >

  • Open Access

    ARTICLE

    Effects of Filler-Asphalt Ratio on the Properties of Lignin and Polyester Fiber Reinforced SMPU/SBS Modified Asphalt Mortar

    Wenjing Xia1,*, JinHui Wang1, Tao Xu1, Nan Jiang2

    Journal of Renewable Materials, Vol.11, No.8, pp. 3387-3402, 2023, DOI:10.32604/jrm.2023.026971

    Abstract To understand the effects of filler-asphalt ratio on different properties of lignin and polyester fiber reinforced shape memory polyurethane (SMPU)/styrene butadiene styrene (SBS) composite modified asphalt mortar (PSAM), as well as to reveal the reinforcing and toughening mechanisms of lignin and polyester fibers on PSAM, SMPU, SBS and mineral powder were first utilized to prepare PSAM. Then the conventional, rheological and anticracking properties of lignin fiber reinforced PSAM (LFAM) and polyester fiber reinforced PSAM (PFAM) at different filler-asphalt ratios were characterized. Test results indicate that the shear strength, deformation resistance and viscosity are increased after adding 0.8wt% lignin fiber or… More > Graphic Abstract

    Effects of Filler-Asphalt Ratio on the Properties of Lignin and Polyester Fiber Reinforced SMPU/SBS Modified Asphalt Mortar

  • Open Access

    ARTICLE

    Effect of Oils on SBS Modified Asphalt: Rheological Characteristics and Oxidation Aging

    Jing Xu1,2,*, Yuquan Yao3, Kai Zhang1, Jiangang Yang2, Jie Gao2, Jian Zhou2

    Journal of Renewable Materials, Vol.11, No.3, pp. 1339-1351, 2023, DOI:10.32604/jrm.2022.023270

    Abstract This study focuses on the effect of oils on rheology and oxidation aging of Styrene-Butadiene-Styrene modified asphalt (SBSMA) in the long term, after reducing one low-temperature Performance Grade (PG) of SBSMA by incorporating oils. Two oils, including corn-based bio-oil and re-refined engine oil bottom (REOB), were selected to enhance the low-temperature performance of SBSMA. All samples were subjected to Rolling Thin Film Oven (RTFO) aging and 20-h as well as 40-h Pressure Aging Vessel (PAV20 and PAV40) aging, prior to multiple stress creep recovery (MSCR), frequency sweep and Flourier transform infrared spectroscopy (FTIR) scanning. A good high-temperature performance of oil/SBS… More >

  • Open Access

    ARTICLE

    Computational Modeling of Intergranular Crack Propagation in an Intermetallic Compound Layer

    Tong An1,2,*, Rui Zhou1,2, Fei Qin1,2,*, Pei Chen1,2, Yanwei Dai1,2, Yanpeng Gong1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1481-1502, 2023, DOI:10.32604/cmes.2023.022475

    Abstract A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds (IMCs) in solder joints. The effects of the grain aggregate morphology, the grain boundary defects and the sensitivity of the various cohesive zone parameters in predicting the overall mechanical response are investigated. The overall strength is predominantly determined by the weak grain interfaces; both the grain aggregate morphology and the weak grain interfaces control the crack configuration; the different normal and tangential strengths of grain interfaces result in different intergranular cracking behaviors and play a critical role in determining the macroscopic mechanical response of… More >

  • Open Access

    ARTICLE

    Crack Propagation in Pipelines Under Extreme Conditions of Near-Neutral PH SCC

    Abdullah Alsit*, Mohammad Alkhedher, Hasan Hamdan

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5315-5329, 2022, DOI:10.32604/cmc.2022.031042

    Abstract Stress Corrosion Cracking (SCC) process through which cracks occur in a variety of susceptible materials is a result of a combination of residual or applied stresses and corrosion. In oil and gas field, buried pipeline steels are made of low-alloy steels with a ferritic-pearlitic structure, such as X70. In dilute solutions, these materials are prone to SCC failure. The Near-neutral simulated soil solution (NS4) solution is established to imitate SCC conditions and subsequently became the industry requirement for crack growth experiments in the majority of laboratories. The strain-assisted active crack pathways are considered while modelling SCC growth as an oxide… More >

  • Open Access

    ARTICLE

    Study on the Tangential Tensile Mechanical Properties of Moso Bamboo

    Biqing Shu1,2, Lu Hong3, Suxia Li1,4, Yupeng Tao2, Jianxin Cui1, Naiqiang Fu2, Junbao Yu2, Chen Li2, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol.10, No.8, pp. 2203-2216, 2022, DOI:10.32604/jrm.2022.019882

    Abstract In this work, we used tensile tests to analyze the tangential failure forms of raw bamboo and determine a relationship between tangential tensile strength, elastic modulus, position, density, and moisture content. We found that the tangential mechanical properties of the culm wall were mainly dependent on the mechanical properties of the basic structure of the thin wall. Formulas for calculating the tangential tensile strength of moso bamboo and adjusting the moisture content were also determined. The tangential tensile strength and the tangential tensile modulus of elasticity (TTMOE) followed: outer > middle > inner, and diaphragm > bamboo node > culm… More >

  • Open Access

    ARTICLE

    Laboratory Evaluation of Fiber-Modified Asphalt Mixtures Incorporating Steel Slag Aggregates

    Adham Mohammed Alnadish1,*, Mohamad Yusri Aman1, Herda Yati Binti Katman2, Mohd Rasdan Ibrahim3

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5967-5990, 2022, DOI:10.32604/cmc.2022.017387

    Abstract Vigorous and continued efforts by researchers and engineers have contributed towards maintaining environmental sustainability through the utilization of waste materials in civil engineering applications as an alternative to natural sources. In this study, granite aggregates in asphaltic mixes were replaced by electric arc furnace (EAF) steel slag aggregates with different proportions to identify the best combination in terms of superior performance. Asphalt mixtures showing the best performance were further reinforced with polyvinyl alcohol (PVA), acrylic, and polyester fibers at the dosages of 0.05%, 0.15%, and 0.3% by weight of the aggregates. The performance tests of this study were resilient modulus,… More >

Displaying 1-10 on page 1 of 39. Per Page