Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (126)
  • Open Access

    ARTICLE

    Performance Analysis of Various Forecasting Models for Multi-Seasonal Global Horizontal Irradiance Forecasting Using the India Region Dataset

    Manoharan Madhiarasan*

    Energy Engineering, Vol.122, No.8, pp. 2993-3011, 2025, DOI:10.32604/ee.2025.068358 - 24 July 2025

    Abstract Accurate Global Horizontal Irradiance (GHI) forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouring green energy resources. Particularly considering the implications of the aggressive GHG emission targets, accurate GHI forecasting has become vital for developing, designing, and operational managing solar energy systems. This research presented the core concepts of modelling and performance analysis of the application of various forecasting models such as ARIMA (Autoregressive Integrated Moving Average), Elaman NN (Elman Neural Network), RBFN (Radial Basis Function Neural Network),… More >

  • Open Access

    ARTICLE

    E-GlauNet: A CNN-Based Ensemble Deep Learning Model for Glaucoma Detection and Staging Using Retinal Fundus Images

    Maheen Anwar1, Saima Farhan1, Yasin Ul Haq2, Waqar Azeem3, Muhammad Ilyas4, Razvan Cristian Voicu5,*, Muhammad Hassan Tanveer5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3477-3502, 2025, DOI:10.32604/cmc.2025.065141 - 03 July 2025

    Abstract Glaucoma, a chronic eye disease affecting millions worldwide, poses a substantial threat to eyesight and can result in permanent vision loss if left untreated. Manual identification of glaucoma is a complicated and time-consuming practice requiring specialized expertise and results may be subjective. To address these challenges, this research proposes a computer-aided diagnosis (CAD) approach using Artificial Intelligence (AI) techniques for binary and multiclass classification of glaucoma stages. An ensemble fusion mechanism that combines the outputs of three pre-trained convolutional neural network (ConvNet) models–ResNet-50, VGG-16, and InceptionV3 is utilized in this paper. This fusion technique enhances… More >

  • Open Access

    ARTICLE

    Med-ReLU: A Parameter-Free Hybrid Activation Function for Deep Artificial Neural Network Used in Medical Image Segmentation

    Nawaf Waqas1, Muhammad Islam2,*, Muhammad Yahya3, Shabana Habib4, Mohammed Aloraini2, Sheroz Khan5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3029-3051, 2025, DOI:10.32604/cmc.2025.064660 - 03 July 2025

    Abstract Deep learning (DL), derived from the domain of Artificial Neural Networks (ANN), forms one of the most essential components of modern deep learning algorithms. DL segmentation models rely on layer-by-layer convolution-based feature representation, guided by forward and backward propagation. A critical aspect of this process is the selection of an appropriate activation function (AF) to ensure robust model learning. However, existing activation functions often fail to effectively address the vanishing gradient problem or are complicated by the need for manual parameter tuning. Most current research on activation function design focuses on classification tasks using natural… More >

  • Open Access

    ARTICLE

    Lightweight Deep Learning Model and Novel Dataset for Restoring Damaged Barcodes and QR Codes in Logistics Applications

    Tarek Muallim1, Haluk Kucuk2,*, Muhammet Bareket1, Metin Kahraman1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3557-3581, 2025, DOI:10.32604/cmes.2025.064733 - 30 June 2025

    Abstract This study introduces a lightweight deep learning model and a novel synthetic dataset designed to restore damaged one-dimensional (1D) barcodes and Quick Response (QR) codes, addressing critical challenges in logistics operations. The proposed solution leverages an efficient Pix2Pix-based framework, a type of conditional Generative Adversarial Network (GAN) optimized for image-to-image translation tasks, enabling the recovery of degraded barcodes and QR codes with minimal computational overhead. A core contribution of this work is the development of a synthetic dataset that simulates realistic damage scenarios frequently encountered in logistics environments, such as low contrast, misalignment, physical wear,… More >

  • Open Access

    ARTICLE

    Video-Based Human Activity Recognition Using Hybrid Deep Learning Model

    Jungpil Shin1,*, Md. Al Mehedi Hasan2, Md. Maniruzzaman3, Satoshi Nishimura1, Sultan Alfarhood4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3615-3638, 2025, DOI:10.32604/cmes.2025.064588 - 30 June 2025

    Abstract Activity recognition is a challenging topic in the field of computer vision that has various applications, including surveillance systems, industrial automation, and human-computer interaction. Today, the demand for automation has greatly increased across industries worldwide. Real-time detection requires edge devices with limited computational time. This study proposes a novel hybrid deep learning system for human activity recognition (HAR), aiming to enhance the recognition accuracy and reduce the computational time. The proposed system combines a pre-trained image classification model with a sequence analysis model. First, the dataset was divided into a training set (70%), validation set… More > Graphic Abstract

    Video-Based Human Activity Recognition Using Hybrid Deep Learning Model

  • Open Access

    ARTICLE

    Forecasting Solar Energy Production across Multiple Sites Using Deep Learning

    Samira Marhraoui1,2,*, Basma Saad3, Hassan Silkan1, Said Laasri2, Asmaa El Hannani3

    Energy Engineering, Vol.122, No.7, pp. 2653-2672, 2025, DOI:10.32604/ee.2025.064498 - 27 June 2025

    Abstract Photovoltaic (PV) power forecasting is essential for balancing energy supply and demand in renewable energy systems. However, the performance of PV panels varies across different technologies due to differences in efficiency and how they process solar radiation. This study evaluates the effectiveness of deep learning models in predicting PV power generation for three panel technologies: Hybrid-Si, Mono-Si, and Poly-Si, across three forecasting horizons: 1-step, 12-step, and 24-step. Among the tested models, the Convolutional Neural Network—Long Short-Term Memory (CNN-LSTM) architecture exhibited superior performance, particularly for the 24-step horizon, achieving R2 = 0.9793 and MAE = 0.0162 for More >

  • Open Access

    ARTICLE

    Diabetes Prediction Using ADASYN-Based Data Augmentation and CNN-BiGRU Deep Learning Model

    Tehreem Fatima1, Kewen Xia1,*, Wenbiao Yang2, Qurat Ul Ain1, Poornima Lankani Perera1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 811-826, 2025, DOI:10.32604/cmc.2025.063686 - 09 June 2025

    Abstract The rising prevalence of diabetes in modern society underscores the urgent need for precise and efficient diagnostic tools to support early intervention and treatment. However, the inherent limitations of existing datasets, including significant class imbalances and inadequate sample diversity, pose challenges to the accurate prediction and classification of diabetes. Addressing these issues, this study proposes an innovative diabetes prediction framework that integrates a hybrid Convolutional Neural Network-Bidirectional Gated Recurrent Unit (CNN-BiGRU) model for classification with Adaptive Synthetic Sampling (ADASYN) for data augmentation. ADASYN was employed to generate synthetic yet representative data samples, effectively mitigating class… More >

  • Open Access

    ARTICLE

    Improving Security-Sensitive Deep Learning Models through Adversarial Training and Hybrid Defense Mechanisms

    Xuezhi Wen1, Eric Danso2,*, Solomon Danso2

    Journal of Cyber Security, Vol.7, pp. 45-69, 2025, DOI:10.32604/jcs.2025.063606 - 08 May 2025

    Abstract Deep learning models have achieved remarkable success in healthcare, finance, and autonomous systems, yet their security vulnerabilities to adversarial attacks remain a critical challenge. This paper presents a novel dual-phase defense framework that combines progressive adversarial training with dynamic runtime protection to address evolving threats. Our approach introduces three key innovations: multi-stage adversarial training with TRADES (Tradeoff-inspired Adversarial Defense via Surrogate-loss minimization) loss that progressively scales perturbation strength, maintaining 85.10% clean accuracy on CIFAR-10 (Canadian Institute for Advanced Research 10-class dataset) while improving robustness; a hybrid runtime defense integrating feature manipulation, statistical anomaly detection, and… More >

  • Open Access

    ARTICLE

    A Federated Learning Incentive Mechanism for Dynamic Client Participation: Unbiased Deep Learning Models

    Jianfeng Lu1, Tao Huang1, Yuanai Xie2,*, Shuqin Cao1, Bing Li3

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 619-634, 2025, DOI:10.32604/cmc.2025.060094 - 26 March 2025

    Abstract The proliferation of deep learning (DL) has amplified the demand for processing large and complex datasets for tasks such as modeling, classification, and identification. However, traditional DL methods compromise client privacy by collecting sensitive data, underscoring the necessity for privacy-preserving solutions like Federated Learning (FL). FL effectively addresses escalating privacy concerns by facilitating collaborative model training without necessitating the sharing of raw data. Given that FL clients autonomously manage training data, encouraging client engagement is pivotal for successful model training. To overcome challenges like unreliable communication and budget constraints, we present ENTIRE, a contract-based dynamic… More >

  • Open Access

    ARTICLE

    A Global-Local Parallel Dual-Branch Deep Learning Model with Attention-Enhanced Feature Fusion for Brain Tumor MRI Classification

    Zhiyong Li, Xinlian Zhou*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 739-760, 2025, DOI:10.32604/cmc.2025.059807 - 26 March 2025

    Abstract Brain tumor classification is crucial for personalized treatment planning. Although deep learning-based Artificial Intelligence (AI) models can automatically analyze tumor images, fine details of small tumor regions may be overlooked during global feature extraction. Therefore, we propose a brain tumor Magnetic Resonance Imaging (MRI) classification model based on a global-local parallel dual-branch structure. The global branch employs ResNet50 with a Multi-Head Self-Attention (MHSA) to capture global contextual information from whole brain images, while the local branch utilizes VGG16 to extract fine-grained features from segmented brain tumor regions. The features from both branches are processed through More >

Displaying 11-20 on page 2 of 126. Per Page