Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Deep Learning Based Online Defect Detection Method for Automotive Sealing Rings

    Jian Ge1, Qin Qin1,*, Jinhua Jiang1, Zhiwei Shen2, Zimei Tu1, Yahui Zhang1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3211-3226, 2025, DOI:10.32604/cmc.2025.059389 - 16 April 2025

    Abstract Manufacturers must identify and classify various defects in automotive sealing rings to ensure product quality. Deep learning algorithms show promise in this field, but challenges remain, especially in detecting small-scale defects under harsh industrial conditions with multimodal data. This paper proposes an enhanced version of You Only Look Once (YOLO)v8 for improved defect detection in automotive sealing rings. We introduce the Multi-scale Adaptive Feature Extraction (MAFE) module, which integrates Deformable Convolutional Network (DCN) and Space-to-Depth (SPD) operations. This module effectively captures long-range dependencies, enhances spatial aggregation, and minimizes information loss of small objects during feature More >

  • Open Access

    ARTICLE

    Steel Ball Defect Detection System Using Automatic Vertical Rotating Mechanism and Convolutional Neural Network

    Yi-Ze Wu, Yi-Cheng Huang*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 97-114, 2025, DOI:10.32604/cmc.2025.063441 - 26 March 2025

    Abstract Precision steel balls are critical components in precision bearings. Surface defects on the steel balls will significantly reduce their useful life and cause linear or rotational transmission errors. Human visual inspection of precision steel balls demands significant labor work. Besides, human inspection cannot maintain consistent quality assurance. To address these limitations and reduce inspection time, a convolutional neural network (CNN) based optical inspection system has been developed that automatically detects steel ball defects using a novel designated vertical mechanism. During image detection processing, two key challenges were addressed and resolved. They are the reflection caused… More >

  • Open Access

    ARTICLE

    MSCM-Net: Rail Surface Defect Detection Based on a Multi-Scale Cross-Modal Network

    Xin Wen*, Xiao Zheng, Yu He

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4371-4388, 2025, DOI:10.32604/cmc.2025.060661 - 06 March 2025

    Abstract Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation. However, existing detection methods often struggle with challenges such as complex defect morphology, texture similarity, and fuzzy edges, leading to poor accuracy and missed detections. In order to resolve these problems, we propose MSCM-Net (Multi-Scale Cross-Modal Network), a multiscale cross-modal framework focused on detecting rail surface defects. MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps, effectively capturing and enhancing features at different scales for each modality. To… More >

  • Open Access

    ARTICLE

    Steel Surface Defect Detection Using Learnable Memory Vision Transformer

    Syed Tasnimul Karim Ayon1,#, Farhan Md. Siraj1,#, Jia Uddin2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 499-520, 2025, DOI:10.32604/cmc.2025.058361 - 03 January 2025

    Abstract This study investigates the application of Learnable Memory Vision Transformers (LMViT) for detecting metal surface flaws, comparing their performance with traditional CNNs, specifically ResNet18 and ResNet50, as well as other transformer-based models including Token to Token ViT, ViT without memory, and Parallel ViT. Leveraging a widely-used steel surface defect dataset, the research applies data augmentation and t-distributed stochastic neighbor embedding (t-SNE) to enhance feature extraction and understanding. These techniques mitigated overfitting, stabilized training, and improved generalization capabilities. The LMViT model achieved a test accuracy of 97.22%, significantly outperforming ResNet18 (88.89%) and ResNet50 (88.90%), as well… More >

  • Open Access

    ARTICLE

    A Lightweight Multiscale Feature Fusion Network for Solar Cell Defect Detection

    Xiaoyun Chen1, Lanyao Zhang1, Xiaoling Chen1, Yigang Cen2, Linna Zhang1,*, Fugui Zhang1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 521-542, 2025, DOI:10.32604/cmc.2024.058063 - 03 January 2025

    Abstract Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules. In the production process, defect samples occur infrequently and exhibit random shapes and sizes, which makes it challenging to collect defective samples. Additionally, the complex surface background of polysilicon cell wafers complicates the accurate identification and localization of defective regions. This paper proposes a novel Lightweight Multi-scale Feature Fusion network (LMFF) to address these challenges. The network comprises a feature extraction network, a multi-scale feature fusion module (MFF), and a segmentation network. Specifically, a feature extraction network is proposed to obtain… More >

  • Open Access

    ARTICLE

    YOLO-DEI: Enhanced Information Fusion Model for Defect Detection in LCD

    Shi Luo, Sheng Zheng*, Yuxin Zhao

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3881-3901, 2024, DOI:10.32604/cmc.2024.056773 - 19 December 2024

    Abstract In the age of smart technology, the widespread use of small LCD (Liquid Crystal Display) necessitates pre-market defect detection to ensure quality and reduce the incidence of defective products. Manual inspection is both time-consuming and labor-intensive. Existing methods struggle with accurately detecting small targets, such as point defects, and handling defects with significant scale variations, such as line defects, especially in complex background conditions. To address these challenges, this paper presents the YOLO-DEI (Deep Enhancement Information) model, which integrates DCNv2 (Deformable convolution) into the backbone network to enhance feature extraction under geometric transformations. The model More >

  • Open Access

    PROCEEDINGS

    Advancing Ultrasonics-Based Techniques for Non-Destructive Evaluation of Additive Manufactured Composites

    Xudong Yu1,*, Hai Shen1, Jingyuan Lu1, Shangqin Yuan2, Ming Huang3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011546

    Abstract The continuous advancement of Additive Manufacturing (AM) technologies has revolutionized the production of intricate components and reinforced composites with tailored mechanical properties. However, the variability in AM techniques and processing parameters often leads to discrepancies in fibre volume fraction, porosity, and interfaces in AM composites, resulting in dispersed elastic moduli and mechanical responses, which necessitates robustness non-destructive evaluation (NDE) methods. Additionally, AM introduces new defect morphologies, dimensions, and locations, demanding new and more reliable non-destructive testing (NDT) techniques.
    This research commences by quantifying orientation-dependent mechanical properties of laser-sintered nanocomposites of carbon nanotube (CNT) reinforced polyamine (PA).… More >

  • Open Access

    ARTICLE

    YOLO-VSI: An Improved YOLOv8 Model for Detecting Railway Turnouts Defects in Complex Environments

    Chenghai Yu, Zhilong Lu*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3261-3280, 2024, DOI:10.32604/cmc.2024.056413 - 18 November 2024

    Abstract Railway turnouts often develop defects such as chipping, cracks, and wear during use. If not detected and addressed promptly, these defects can pose significant risks to train operation safety and passenger security. Despite advances in defect detection technologies, research specifically targeting railway turnout defects remains limited. To address this gap, we collected images from railway inspectors and constructed a dataset of railway turnout defects in complex environments. To enhance detection accuracy, we propose an improved YOLOv8 model named YOLO-VSS-SOUP-Inner-CIoU (YOLO-VSI). The model employs a state-space model (SSM) to enhance the C2f module in the YOLOv8… More >

  • Open Access

    ARTICLE

    Research on Defect Detection of Wind Turbine Blades Based on Morphology and Improved Otsu Algorithm Using Infrared Images

    Shuang Kang1, Yinchao He1,2, Wenwen Li1,*, Sen Liu2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 933-949, 2024, DOI:10.32604/cmc.2024.056614 - 15 October 2024

    Abstract To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades (WTB), this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm. First, mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image. The algorithm employs entropy as the objective function to guide the iteration process of image enhancement, selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations, effectively enhancing the detail features of defect… More >

  • Open Access

    ARTICLE

    YOLO-RLC: An Advanced Target-Detection Algorithm for Surface Defects of Printed Circuit Boards Based on YOLOv5

    Yuanyuan Wang1,2,*, Jialong Huang1, Md Sharid Kayes Dipu1, Hu Zhao3, Shangbing Gao1,2, Haiyan Zhang1,2, Pinrong Lv1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4973-4995, 2024, DOI:10.32604/cmc.2024.055839 - 12 September 2024

    Abstract Printed circuit boards (PCBs) provide stable connections between electronic components. However, defective printed circuit boards may cause the entire equipment system to malfunction, resulting in incalculable losses. Therefore, it is crucial to detect defective printed circuit boards during the generation process. Traditional detection methods have low accuracy in detecting subtle defects in complex background environments. In order to improve the detection accuracy of surface defects on industrial printed circuit boards, this paper proposes a residual large kernel network based on YOLOv5 (You Only Look Once version 5) for PCBs surface defect detection, called YOLO-RLC (You… More >

Displaying 1-10 on page 1 of 46. Per Page