Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    ARTICLE

    Steel Surface Defect Detection via the Multiscale Edge Enhancement Method

    Yuanyuan Wang1,*, Yemeng Zhu1, Xiuchuan Chen1, Tongtong Yin1, Shiwei Su2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072404 - 12 January 2026

    Abstract To solve the false detection and missed detection problems caused by various types and sizes of defects in the detection of steel surface defects, similar defects and background features, and similarities between different defects, this paper proposes a lightweight detection model named multiscale edge and squeeze-and-excitation attention detection network (MSESE), which is built upon the You Only Look Once version 11 nano (YOLOv11n). To address the difficulty of locating defect edges, we first propose an edge enhancement module (EEM), apply it to the process of multiscale feature extraction, and then propose a multiscale edge enhancement… More >

  • Open Access

    ARTICLE

    An RMD-YOLOv11 Approach for Typical Defect Detection of PV Modules

    Tao Geng1, Shuaibing Li1,*, Yunyun Yun1, Yongqiang Kang1, Hongwei Li2, Junmin Zhu2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071644 - 12 January 2026

    Abstract In order to address the challenges posed by complex background interference, high miss-detection rates of micro-scale defects, and limited model deployment efficiency in photovoltaic (PV) module defect detection, this paper proposes an efficient detection framework based on an improved YOLOv11 architecture. First, a Re-parameterized Convolution (RepConv) module is integrated into the backbone to enhance the model’s sensitivity to fine-grained defects—such as micro-cracks and hot spots—while maintaining high inference efficiency. Second, a Multi-Scale Feature Fusion Convolutional Block Attention Mechanism (MSFF-CBAM) is designed to guide the network toward critical defect regions by jointly modeling channel-wise and spatial… More >

  • Open Access

    ARTICLE

    Optimized Industrial Surface Defect Detection Based on Improved YOLOv11

    Hua-Qin Wu1,2, Hao Yan1,2, Hong Zhang1,2,*, Shun-Wu Xu1,2, Feng-Yu Gao1,2, Zhao-Wen Chen1,2

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070589 - 08 January 2026

    Abstract In industrial manufacturing, efficient surface defect detection is crucial for ensuring product quality and production safety. Traditional inspection methods are often slow, subjective, and prone to errors, while classical machine vision techniques struggle with complex backgrounds and small defects. To address these challenges, this study proposes an improved YOLOv11 model for detecting defects on hot-rolled steel strips using the NEU-DET dataset. Three key improvements are introduced in the proposed model. First, a lightweight Guided Attention Feature Module (GAFM) is incorporated to enhance multi-scale feature fusion, allowing the model to better capture and integrate semantic and… More >

  • Open Access

    ARTICLE

    FD-YOLO: An Attention-Augmented Lightweight Network for Real-Time Industrial Fabric Defect Detection

    Shaobo Kang, Mingzhi Yang*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071488 - 09 December 2025

    Abstract Fabric defect detection plays a vital role in ensuring textile quality. However, traditional manual inspection methods are often inefficient and inaccurate. To overcome these limitations, we propose FD-YOLO, an enhanced lightweight detection model based on the YOLOv11n framework. The proposed model introduces the Bi-level Routing Attention (BRAttention) mechanism to enhance defect feature extraction, enabling more detailed feature representation. It proposes Deep Progressive Cross-Scale Fusion Neck (DPCSFNeck) to better capture small-scale defects and incorporates a Multi-Scale Dilated Residual (MSDR) module to strengthen multi-scale feature representation. Furthermore, a Shared Detail-Enhanced Lightweight Head (SDELHead) is employed to reduce More >

  • Open Access

    ARTICLE

    Lightweight Small Defect Detection with YOLOv8 Using Cascaded Multi-Receptive Fields and Enhanced Detection Heads

    Shengran Zhao, Zhensong Li*, Xiaotan Wei, Yutong Wang, Kai Zhao

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-14, 2026, DOI:10.32604/cmc.2025.068138 - 10 November 2025

    Abstract In printed circuit board (PCB) manufacturing, surface defects can significantly affect product quality. To address the performance degradation, high false detection rates, and missed detections caused by complex backgrounds in current intelligent inspection algorithms, this paper proposes CG-YOLOv8, a lightweight and improved model based on YOLOv8n for PCB surface defect detection. The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy, thereby enhancing the capability of identifying diverse defects under complex conditions. Specifically, a cascaded multi-receptive field (CMRF) module is adopted to replace the SPPF module… More >

  • Open Access

    ARTICLE

    KN-YOLOv8: A Lightweight Deep Learning Model for Real-Time Coffee Bean Defect Detection

    Tesfaye Adisu Tarekegn1,*, Taye Girma Debelee1,2

    Journal on Artificial Intelligence, Vol.7, pp. 585-613, 2025, DOI:10.32604/jai.2025.067333 - 01 December 2025

    Abstract The identification of defect types and their reduction values is the most crucial step in coffee grading. In Ethiopia, the current coffee defect investigation techniques rely on manual screening, which requires substantial human resources, time-consuming, and prone to errors. Recently, the deep learning driven object detection has shown promising results in coffee defect identification and grading tasks. In this study, we propose KN-YOLOv8, a modified You Only Look Once version-8 (YOLOv8) model optimized for real-time detection of coffee bean defects. This lightweight network incorporates effective feature fusion techniques to accurately detect and locate defects, even… More >

  • Open Access

    ARTICLE

    Detecting Vehicle Mechanical Defects Using an Ensemble Deep Learning Model with Mel Frequency Cepstral Coefficients from Acoustic Data

    Mudasir Ali1, Muhammad Faheem Mushtaq2, Urooj Akram2, Nagwan Abdel Samee3,*, Mona M. Jamjoom4, Imran Ashraf5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1863-1901, 2025, DOI:10.32604/cmes.2025.070389 - 26 November 2025

    Abstract Differentiating between regular and abnormal noises in machine-generated sounds is a crucial but difficult problem. For accurate audio signal classification, suitable and efficient techniques are needed, particularly machine learning approaches for automated classification. Due to the dynamic and diverse representative characteristics of audio data, the probability of achieving high classification accuracy is relatively low and requires further research efforts. This study proposes an ensemble model based on the LeNet and hierarchical attention mechanism (HAM) models with MFCC features to enhance the models’ capacity to handle bias. Additionally, CNNs, bidirectional LSTM (BiLSTM), CRNN, LSTM, capsule network More >

  • Open Access

    REVIEW

    X-Ray Techniques for Defect Detection in Industrial Components and Materials: A Review

    Xin Wen1,2,3, Siru Chen1, Kechen Song2,3,4,*, Han Yu2,3,*, Xingjie Li2,3, Ling Zhong1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4173-4201, 2025, DOI:10.32604/cmc.2025.070906 - 23 October 2025

    Abstract With the growing demand for higher product quality in manufacturing, X-ray non-destructive testing has found widespread application not only in industrial quality control but also in a wide range of industrial applications, owing to its unique capability to penetrate materials and reveal both internal and surface defects. This paper presents a systematic review of recent advances and current applications of X-ray-based defect detection in industrial components. It begins with an overview of the fundamental principles of X-ray imaging and typical inspection workflows, followed by a review of classical image processing methods for defect detection, segmentation,… More >

  • Open Access

    ARTICLE

    Hybrid CNN Architecture for Hot Spot Detection in Photovoltaic Panels Using Fast R-CNN and GoogleNet

    Carlos Quiterio Gómez Muñoz1, Fausto Pedro García Márquez2,*, Jorge Bernabé Sanjuán3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3369-3386, 2025, DOI:10.32604/cmes.2025.069225 - 30 September 2025

    Abstract Due to the continuous increase in global energy demand, photovoltaic solar energy generation and associated maintenance requirements have significantly expanded. One critical maintenance challenge in photovoltaic installations is detecting hot spots, localized overheating defects in solar cells that drastically reduce efficiency and can lead to permanent damage. Traditional methods for detecting these defects rely on manual inspections using thermal imaging, which are costly, labor-intensive, and impractical for large-scale installations. This research introduces an automated hybrid system based on two specialized convolutional neural networks deployed in a cascaded architecture. The first convolutional neural network efficiently detects More >

  • Open Access

    ARTICLE

    A YOLOv11 Empowered Road Defect Detection Model

    Xubo Liu1, Yunxiang Liu2, Peng Luo2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1073-1094, 2025, DOI:10.32604/cmc.2025.066078 - 29 August 2025

    Abstract Roads inevitably have defects during use, which not only seriously affect their service life but also pose a hidden danger to traffic safety. Existing algorithms for detecting road defects are unsatisfactory in terms of accuracy and generalization, so this paper proposes an algorithm based on YOLOv11. The method embeds wavelet transform convolution (WTConv) into the backbone’s C3k2 module to enhance low-frequency feature extraction while avoiding parameter bloat. Secondly, a novel multi-scale fusion diffusion network (MFDN) architecture is designed for the neck to strengthen cross-scale feature interactions, boosting detection precision. In terms of model optimization, the… More >

Displaying 1-10 on page 1 of 60. Per Page