Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (708)
  • Open Access

    ARTICLE

    Loss to Specialized Cardiology Follow-Up in Adults Living with Congenital Heart Disease

    Cheryl Dickson1,2,4, Danielle Osborn1, David Baker1,4, Judith Fethney3, David S. Celermajer1,4, Rachael Cordina1,4,*

    Congenital Heart Disease, Vol.19, No.1, pp. 49-63, 2024, DOI:10.32604/chd.2023.044874

    Abstract Background: Much has been written about the loss to follow-up in the transition between pediatric and adult Congenital Heart Disease (CHD) care centers. Much less is understood about the loss to follow-up (LTF) after a successful transition. This is critical too, as patients lost to specialised care are more likely to experience morbidity and premature mortality. Aims: To understand the prevalence and reasons for loss to follow-up (LTF) at a large Australian Adult Congenital Heart Disease (ACHD) centre. Methods: Patients with moderate or highly complex CHD and gaps in care of >3 years (defined as LTF) were identified from a… More >

  • Open Access

    ARTICLE

    An Artificial Intelligence-Based Framework for Fruits Disease Recognition Using Deep Learning

    Irfan Haider1, Muhammad Attique Khan1,*, Muhammad Nazir1, Taerang Kim2, Jae-Hyuk Cha2

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 529-554, 2024, DOI:10.32604/csse.2023.042080

    Abstract Fruit infections have an impact on both the yield and the quality of the crop. As a result, an automated recognition system for fruit leaf diseases is important. In artificial intelligence (AI) applications, especially in agriculture, deep learning shows promising disease detection and classification results. The recent AI-based techniques have a few challenges for fruit disease recognition, such as low-resolution images, small datasets for learning models, and irrelevant feature extraction. This work proposed a new fruit leaf leaf leaf disease recognition framework using deep learning features and improved pathfinder optimization. Three fruit types have been employed in this work for… More >

  • Open Access

    ARTICLE

    Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model

    Nazik Alturki1, Abdulaziz Altamimi2, Muhammad Umer3,*, Oumaima Saidani1, Amal Alshardan1, Shtwai Alsubai4, Marwan Omar5, Imran Ashraf6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3513-3534, 2024, DOI:10.32604/cmes.2023.045868

    Abstract Chronic kidney disease (CKD) is a major health concern today, requiring early and accurate diagnosis. Machine learning has emerged as a powerful tool for disease detection, and medical professionals are increasingly using ML classifier algorithms to identify CKD early. This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California, UC Irvine Machine Learning repository. The research introduces TrioNet, an ensemble model combining extreme gradient boosting, random forest, and extra tree classifier, which excels in providing highly accurate predictions for CKD. Furthermore, K nearest neighbor (KNN) imputer is utilized to deal… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Federated Deep Learning Diagnostic Method for Multi-Stage Diseases

    Jinbo Yang1, Hai Huang1, Lailai Yin2, Jiaxing Qu3, Wanjuan Xie4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3085-3099, 2024, DOI:10.32604/cmes.2023.045417

    Abstract Diagnosing multi-stage diseases typically requires doctors to consider multiple data sources, including clinical symptoms, physical signs, biochemical test results, imaging findings, pathological examination data, and even genetic data. When applying machine learning modeling to predict and diagnose multi-stage diseases, several challenges need to be addressed. Firstly, the model needs to handle multimodal data, as the data used by doctors for diagnosis includes image data, natural language data, and structured data. Secondly, privacy of patients’ data needs to be protected, as these data contain the most sensitive and private information. Lastly, considering the practicality of the model, the computational requirements should… More >

  • Open Access

    ARTICLE

    MDCN: Modified Dense Convolution Network Based Disease Classification in Mango Leaves

    Chirag Chandrashekar1, K. P. Vijayakumar1,*, K. Pradeep1, A. Balasundaram1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2511-2533, 2024, DOI:10.32604/cmc.2024.047697

    Abstract The most widely farmed fruit in the world is mango. Both the production and quality of the mangoes are hampered by many diseases. These diseases need to be effectively controlled and mitigated. Therefore, a quick and accurate diagnosis of the disorders is essential. Deep convolutional neural networks, renowned for their independence in feature extraction, have established their value in numerous detection and classification tasks. However, it requires large training datasets and several parameters that need careful adjustment. The proposed Modified Dense Convolutional Network (MDCN) provides a successful classification scheme for plant diseases affecting mango leaves. This model employs the strength… More >

  • Open Access

    REVIEW

    A Review of the Application of Artificial Intelligence in Orthopedic Diseases

    Xinlong Diao, Xiao Wang*, Junkang Qin, Qinmu Wu, Zhiqin He, Xinghong Fan

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2617-2665, 2024, DOI:10.32604/cmc.2024.047377

    Abstract In recent years, Artificial Intelligence (AI) has revolutionized people’s lives. AI has long made breakthrough progress in the field of surgery. However, the research on the application of AI in orthopedics is still in the exploratory stage. The paper first introduces the background of AI and orthopedic diseases, addresses the shortcomings of traditional methods in the detection of fractures and orthopedic diseases, draws out the advantages of deep learning and machine learning in image detection, and reviews the latest results of deep learning and machine learning applied to orthopedic image detection in recent years, describing the contributions, strengths and weaknesses,… More >

  • Open Access

    ARTICLE

    Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms

    Afnan M. Alhassan*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2207-2223, 2024, DOI:10.32604/cmc.2024.046427

    Abstract Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL) methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously, classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities presented in the images. To solve the overfitting problem, an optimal feature set has been formed by Enhanced Wolf… More >

  • Open Access

    ARTICLE

    Immune checkpoint receptors and their ligands on CD8 T cells and myeloma cells in extramedullary multiple myeloma

    XIAN ZHANG1, ZHUANG ZHOU2, JUNZHE WANG1, MENGMENG HAN1, HAN LIU1, MEIRONG ZANG1, JIANNING LIU1, JIAPEI LU1, JINQIAO ZHANG1, GUOCHUAN ZHANG2,*, LIXIA SUN1,#,*

    BIOCELL, Vol.48, No.2, pp. 303-311, 2024, DOI:10.32604/biocell.2023.046640

    Abstract Background: Prognosis of multiple myeloma (MM) patients with extramedullary disease (EMD) remains poor. T cell dysfunction and an immunosuppressive environment have been reported in the bone marrow (BM) of MM patients. However, the immunosuppressive microenvironment and immune checkpoint receptors (ICRs) on CD8 T cells in the EMD tissue of newly diagnosed MM (NDMM) patients have not been thoroughly studied. Methods: We investigated the expression levels of T cell immunoglobulin mucin-domain-containing-3 (TIM-3) and T-cell immunoglobulin and ITIM domain (TIGIT) on CD8 T cells and the expression of their ligands (Galectin-9 and CD155) on myeloma cells in EMD tissue of NDMM patients.… More > Graphic Abstract

    Immune checkpoint receptors and their ligands on CD8 T cells and myeloma cells in extramedullary multiple myeloma

  • Open Access

    ARTICLE

    Internet Use and Mental Health among Older Adults in China: Beneficial for Those Who Lack of Intergenerational Emotional Support or Suffering from Chronic Diseases?

    Yuxin Wang1,2,*, Jia Shi1,2

    International Journal of Mental Health Promotion, Vol.26, No.1, pp. 69-80, 2024, DOI:10.32604/ijmhp.2023.044641

    Abstract In the 21st century, the rapid growth of the Internet has presented a significant avenue for China to respond actively to the aging population and promote the “Healthy China” strategy in an orderly manner. This study uses panel data from the China Health and Retirement Longitudinal Study (CHARLS) to empirically investigate the influence of Internet use on the mental health of older adults, particularly those who lack intergenerational emotional support and suffer from chronic diseases. This study employs a multi-period difference-in-differences (DID) method and a two-stage instrumental variable approach to address the endogenous problem. Results show that Internet use has… More >

  • Open Access

    REVIEW

    In vitro engineered models of neurodegenerative diseases

    ZEHRA GÜL MORÇIMEN1, ŞEYMA TAŞDEMIR2, AYLIN ŞENDEMIR3,4,*

    BIOCELL, Vol.48, No.1, pp. 79-96, 2024, DOI:10.32604/biocell.2023.045361

    Abstract Neurodegeneration is a catastrophic process that develops progressive damage leading to functional and structural loss of the cells of the nervous system and is among the biggest unavoidable problems of our age. Animal models do not reflect the pathophysiology observed in humans due to distinct differences between the neural pathways, gene expression patterns, neuronal plasticity, and other disease-related mechanisms in animals and humans. Classical in vitro cell culture models are also not sufficient for pre-clinical drug testing in reflecting the complex pathophysiology of neurodegenerative diseases. Today, modern, engineered techniques are applied to develop multicellular, intricate in vitro models and to… More >

Displaying 21-30 on page 3 of 708. Per Page