Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (127)
  • Open Access

    ARTICLE

    Statistical Time Series Forecasting Models for Pandemic Prediction

    Ahmed ElShafee1, Walid El-Shafai2,3, Abeer D. Algarni4,*, Naglaa F. Soliman4, Moustafa H. Aly5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 349-374, 2023, DOI:10.32604/csse.2023.037408

    Abstract COVID-19 has significantly impacted the growth prediction of a pandemic, and it is critical in determining how to battle and track the disease progression. In this case, COVID-19 data is a time-series dataset that can be projected using different methodologies. Thus, this work aims to gauge the spread of the outbreak severity over time. Furthermore, data analytics and Machine Learning (ML) techniques are employed to gain a broader understanding of virus infections. We have simulated, adjusted, and fitted several statistical time-series forecasting models, linear ML models, and nonlinear ML models. Examples of these models are Logistic Regression, Lasso, Ridge, ElasticNet,… More >

  • Open Access

    ARTICLE

    Probability Based Regression Analysis for the Prediction of Cardiovascular Diseases

    Wasif Akbar1, Adbul Mannan2, Qaisar Shaheen3,*, Mohammad Hijji4, Muhammad Anwar5, Muhammad Ayaz6

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6269-6286, 2023, DOI:10.32604/cmc.2023.036141

    Abstract Machine Learning (ML) has changed clinical diagnostic procedures drastically. Especially in Cardiovascular Diseases (CVD), the use of ML is indispensable to reducing human errors. Enormous studies focused on disease prediction but depending on multiple parameters, further investigations are required to upgrade the clinical procedures. Multi-layered implementation of ML also called Deep Learning (DL) has unfolded new horizons in the field of clinical diagnostics. DL formulates reliable accuracy with big datasets but the reverse is the case with small datasets. This paper proposed a novel method that deals with the issue of less data dimensionality. Inspired by the regression analysis, the… More >

  • Open Access

    ARTICLE

    Identification of Rice Leaf Disease Using Improved ShuffleNet V2

    Yang Zhou, Chunjiao Fu, Yuting Zhai, Jian Li, Ziqi Jin, Yanlei Xu*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4501-4517, 2023, DOI:10.32604/cmc.2023.038446

    Abstract Accurate identification of rice diseases is crucial for controlling diseases and improving rice yield. To improve the classification accuracy of rice diseases, this paper proposed a classification and identification method based on an improved ShuffleNet V2 (GE-ShuffleNet) model. Firstly, the Ghost module is used to replace the convolution in the two basic unit modules of ShuffleNet V2, and the unimportant convolution is deleted from the two basic unit modules of ShuffleNet V2. The Hardswish activation function is applied to replace the ReLU activation function to improve the identification accuracy of the model. Secondly, an effective channel attention (ECA) module is… More >

  • Open Access

    ARTICLE

    A Robust Tuned Random Forest Classifier Using Randomized Grid Search to Predict Coronary Artery Diseases

    Sameh Abd El-Ghany1,2, A. A. Abd El-Aziz1,3,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4633-4648, 2023, DOI:10.32604/cmc.2023.035779

    Abstract Coronary artery disease (CAD) is one of the most authentic cardiovascular afflictions because it is an uncommonly overwhelming heart issue. The breakdown of coronary cardiovascular disease is one of the principal sources of death all over the world. Cardiovascular deterioration is a challenge, especially in youthful and rural countries where there is an absence of human-trained professionals. Since heart diseases happen without apparent signs, high-level detection is desirable. This paper proposed a robust and tuned random forest model using the randomized grid search technique to predict CAD. The proposed framework increases the ability of CAD predictions by tracking down risk… More >

  • Open Access

    ARTICLE

    Convolutional Neural Network-Based Classification of Multiple Retinal Diseases Using Fundus Images

    Aqsa Aslam, Saima Farhan*, Momina Abdul Khaliq, Fatima Anjum, Ayesha Afzaal, Faria Kanwal

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2607-2622, 2023, DOI:10.32604/iasc.2023.034041

    Abstract Use of deep learning algorithms for the investigation and analysis of medical images has emerged as a powerful technique. The increase in retinal diseases is alarming as it may lead to permanent blindness if left untreated. Automation of the diagnosis process of retinal diseases not only assists ophthalmologists in correct decision-making but saves time also. Several researchers have worked on automated retinal disease classification but restricted either to hand-crafted feature selection or binary classification. This paper presents a deep learning-based approach for the automated classification of multiple retinal diseases using fundus images. For this research, the data has been collected… More >

  • Open Access

    ARTICLE

    Diagnosis of Middle Ear Diseases Based on Convolutional Neural Network

    Yunyoung Nam1, Seong Jun Choi2, Jihwan Shin1, Jinseok Lee3,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1521-1532, 2023, DOI:10.32604/csse.2023.034192

    Abstract An otoscope is traditionally used to examine the eardrum and ear canal. A diagnosis of otitis media (OM) relies on the experience of clinicians. If an examiner lacks experience, the examination may be difficult and time-consuming. This paper presents an ear disease classification method using middle ear images based on a convolutional neural network (CNN). Especially the segmentation and classification networks are used to classify an otoscopic image into six classes: normal, acute otitis media (AOM), otitis media with effusion (OME), chronic otitis media (COM), congenital cholesteatoma (CC) and traumatic perforations (TMPs). The Mask R-CNN is utilized for the segmentation… More >

  • Open Access

    ARTICLE

    An Intelligent Approach for Accurate Prediction of Chronic Diseases

    S. Kavi Priya*, N. Saranya

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2571-2587, 2023, DOI:10.32604/csse.2023.031761

    Abstract Around the globe, chronic diseases pose a serious hazard to healthcare communities. The majority of the deaths are due to chronic diseases, and it causes burdens across the world. Through analyzing healthcare data and extracting patterns healthcare administrators, victims, and healthcare communities will get an advantage if the diseases are early predicted. The majority of the existing works focused on increasing the accuracy of the techniques but didn’t concentrate on other performance measures. Thus, the proposed work improves the early detection of chronic disease and safeguards the lives of the patients by increasing the specificity and sensitivity of the classifiers… More >

  • Open Access

    ARTICLE

    Fruit Leaf Diseases Classification: A Hierarchical Deep Learning Framework

    Samra Rehman1, Muhammad Attique Khan1, Majed Alhaisoni2, Ammar Armghan3, Fayadh Alenezi3, Abdullah Alqahtani4, Khean Vesal5, Yunyoung Nam5,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1179-1194, 2023, DOI:10.32604/cmc.2023.035324

    Abstract Manual inspection of fruit diseases is a time-consuming and costly because it is based on naked-eye observation. The authors present computer vision techniques for detecting and classifying fruit leaf diseases. Examples of computer vision techniques are preprocessing original images for visualization of infected regions, feature extraction from raw or segmented images, feature fusion, feature selection, and classification. The following are the major challenges identified by researchers in the literature: (i) low-contrast infected regions extract irrelevant and redundant information, which misleads classification accuracy; (ii) irrelevant and redundant information may increase computational time and reduce the designed model’s accuracy. This paper proposed… More >

  • Open Access

    ARTICLE

    A Framework of Deep Optimal Features Selection for Apple Leaf Diseases Recognition

    Samra Rehman1, Muhammad Attique Khan1, Majed Alhaisoni2, Ammar Armghan3, Usman Tariq4, Fayadh Alenezi3, Ye Jin Kim5, Byoungchol Chang6,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 697-714, 2023, DOI:10.32604/cmc.2023.035183

    Abstract Identifying fruit disease manually is time-consuming, expert-required, and expensive; thus, a computer-based automated system is widely required. Fruit diseases affect not only the quality but also the quantity. As a result, it is possible to detect the disease early on and cure the fruits using computer-based techniques. However, computer-based methods face several challenges, including low contrast, a lack of dataset for training a model, and inappropriate feature extraction for final classification. In this paper, we proposed an automated framework for detecting apple fruit leaf diseases using CNN and a hybrid optimization algorithm. Data augmentation is performed initially to balance the… More >

  • Open Access

    ARTICLE

    Gastrointestinal Diseases Classification Using Deep Transfer Learning and Features Optimization

    Mousa Alhajlah1, Muhammad Nouman Noor2, Muhammad Nazir2, Awais Mahmood1,*, Imran Ashraf3, Tehmina Karamat4

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2227-2245, 2023, DOI:10.32604/cmc.2023.031890

    Abstract Gastrointestinal diseases like ulcers, polyps’, and bleeding are increasing rapidly in the world over the last decade. On average 0.7 million cases are reported worldwide every year. The main cause of gastrointestinal diseases is a Helicobacter Pylori (H. Pylori) bacterium that presents in more than 50% of people around the globe. Many researchers have proposed different methods for gastrointestinal disease using computer vision techniques. Few of them focused on the detection process and the rest of them performed classification. The major challenges that they faced are the similarity of infected and healthy regions that misleads the correct classification accuracy. In… More >

Displaying 31-40 on page 4 of 127. Per Page