Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Optimal Bidding Strategies of Microgrid with Demand Side Management for Economic Emission Dispatch Incorporating Uncertainty and Outage of Renewable Energy Sources

    Mousumi Basu1, Chitralekha Jena2, Baseem Khan3,4,*, Ahmed Ali4

    Energy Engineering, Vol.121, No.4, pp. 849-867, 2024, DOI:10.32604/ee.2024.043294

    Abstract In the restructured electricity market, microgrid (MG), with the incorporation of smart grid technologies, distributed energy resources (DERs), a pumped-storage-hydraulic (PSH) unit, and a demand response program (DRP), is a smarter and more reliable electricity provider. DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines. Better bidding strategies, prepared by MG operators, decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources (RES). But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate. To solve these issues, this study… More >

  • Open Access

    ARTICLE

    Combined Optimal Dispatch of Thermal Power Generators and Energy Storage Considering Thermal Power Deep Peak Clipping and Wind Energy Emission Grading Punishment

    Junhui Li1, Xuanzhong Luo1,2, Changxing Ge3, Cuiping Li1,*, Changrong Wang4

    Energy Engineering, Vol.121, No.4, pp. 869-893, 2024, DOI:10.32604/ee.2024.029722

    Abstract Peak load and wind energy emission pressure rise more as wind energy penetration keeps growing, which affects the stabilization of the PS (power system). This paper suggests integrated optimal dispatching of thermal power generators and BESS (battery energy storage system) taking wind energy emission grading punishment and deep peak clipping into consideration. Firstly, in order to minimize wind abandonment, a hierarchical wind abandonment penalty strategy based on fuzzy control is designed and introduced, and the optimal grid-connected power of wind energy is determined as a result of minimizing the peak cutting cost of the system. Secondly, considering BESS and thermal… More > Graphic Abstract

    Combined Optimal Dispatch of Thermal Power Generators and Energy Storage Considering Thermal Power Deep Peak Clipping and Wind Energy Emission Grading Punishment

  • Open Access

    REVIEW

    Economic Power Dispatching from Distributed Generations: Review of Optimization Techniques

    Paramjeet Kaur1, Krishna Teerth Chaturvedi1, Mohan Lal Kolhe2,*

    Energy Engineering, Vol.121, No.3, pp. 557-579, 2024, DOI:10.32604/ee.2024.043159

    Abstract In the increasingly decentralized energy environment, economical power dispatching from distributed generations (DGs) is crucial to minimizing operating costs, optimizing resource utilization, and guaranteeing a consistent and sustainable supply of electricity. A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability. The choice of optimization technique for economic power dispatching from DGs depends on a number of factors, such as the size and complexity of the power system, the availability of computational resources, and the specific requirements of the… More >

  • Open Access

    ARTICLE

    Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation

    Yan Shi1, Wenjie Li1, Gongbo Fan2,*, Luxi Zhang1, Fengjiu Yang1

    Energy Engineering, Vol.121, No.2, pp. 461-482, 2024, DOI:10.32604/ee.2023.043835

    Abstract Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation, this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side. A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation, with the overarching goal of optimizing the system for low-carbon operation. To begin with, an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side… More >

  • Open Access

    ARTICLE

    Off-Design Simulation of a CSP Power Plant Integrated with a Waste Heat Recovery System

    T. E. Boukelia1,2,*, A. Bourouis1, M. E. Abdesselem3, M. S. Mecibah3

    Energy Engineering, Vol.120, No.11, pp. 2449-2467, 2023, DOI:10.32604/ee.2023.030183

    Abstract Concentrating Solar Power (CSP) plants offer a promising way to generate low-emission energy. However, these plants face challenges such as reduced sunlight during winter and cloudy days, despite being located in high solar radiation areas. Furthermore, their dispatch capacities and yields can be affected by high electricity consumption, particularly at night. The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant (PTPP) equipped with a waste heat recovery system. The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,… More >

  • Open Access

    ARTICLE

    Electricity-Carbon Interactive Optimal Dispatch of Multi-Virtual Power Plant Considering Integrated Demand Response

    Shiwei Su1,2, Guangyong Hu2, Xianghua Li3, Xin Li2, Wei Xiong2,*

    Energy Engineering, Vol.120, No.10, pp. 2343-2368, 2023, DOI:10.32604/ee.2023.028500

    Abstract As new power systems and dual carbon policies develop, virtual power plant cluster (VPPC) provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems. To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant, a multi-virtual power plant (VPP) electricity-carbon interaction optimal scheduling model considering integrated demand response (IDR) is proposed. Firstly, a multi-VPP electricity-carbon interaction framework is established. The interaction of electric energy and carbon quotas can realize energy complementarity, reduce energy waste and promote low-carbon operation. Secondly, in order to coordinate the multiple types of energy and… More > Graphic Abstract

    Electricity-Carbon Interactive Optimal Dispatch of Multi-Virtual Power Plant Considering Integrated Demand Response

  • Open Access

    ARTICLE

    A Blockchain-Based Game Approach to Multi-Microgrid Energy Dispatch

    Zhikang Wang#, Chengxuan Wang#, Wendi Wu, Cheng Sun, Zhengtian Wu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 845-863, 2024, DOI:10.32604/cmes.2023.029442

    Abstract As the current global environment is deteriorating, distributed renewable energy is gradually becoming an important member of the energy internet. Blockchain, as a decentralized distributed ledger with decentralization, traceability and tamper-proof features, is an important way to achieve efficient consumption and multi-party supply of new energy. In this article, we establish a blockchain-based mathematical model of multiple microgrids and microgrid aggregators’ revenue, consider the degree of microgrid users’ preference for electricity thus increasing users’ reliance on the blockchain market, and apply the one-master-multiple-slave Stackelberg game theory to solve the energy dispatching strategy when each market entity pursues the maximum revenue.… More >

  • Open Access

    ARTICLE

    Integrated Generative Adversarial Network and XGBoost for Anomaly Processing of Massive Data Flow in Dispatch Automation Systems

    Wenlu Ji1, Yingqi Liao1,*, Liudong Zhang2

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2825-2848, 2023, DOI:10.32604/iasc.2023.039618

    Abstract Existing power anomaly detection is mainly based on a pattern matching algorithm. However, this method requires a lot of manual work, is time-consuming, and cannot detect unknown anomalies. Moreover, a large amount of labeled anomaly data is required in machine learning-based anomaly detection. Therefore, this paper proposes the application of a generative adversarial network (GAN) to massive data stream anomaly identification, diagnosis, and prediction in power dispatching automation systems. Firstly, to address the problem of the small amount of anomaly data, a GAN is used to obtain reliable labeled datasets for fault diagnosis model training based on a few labeled… More >

  • Open Access

    ARTICLE

    Distributed Robust Optimal Dispatch for the Microgrid Considering Output Correlation between Wind and Photovoltaic

    Ming Li1,*, Cairen Furifu1, Chengyang Ge2, Yunping Zheng1, Shunfu Lin2, Ronghui Liu2

    Energy Engineering, Vol.120, No.8, pp. 1775-1801, 2023, DOI:10.32604/ee.2023.027215

    Abstract As an effective carrier of integrated clean energy, the microgrid has attracted wide attention. The randomness of renewable energies such as wind and solar power output brings a significant cost and impact on the economics and reliability of microgrids. This paper proposes an optimization scheme based on the distributionally robust optimization (DRO) model for a microgrid considering solar-wind correlation. Firstly, scenarios of wind and solar power output scenarios are generated based on non-parametric kernel density estimation and the Frank-Copula function; then the generated scenario results are reduced by K-means clustering; finally, the probability confidence interval of scenario distribution is constrained… More >

  • Open Access

    ARTICLE

    Reliable Scheduling Method for Sensitive Power Business Based on Deep Reinforcement Learning

    Shen Guo*, Jiaying Lin, Shuaitao Bai, Jichuan Zhang, Peng Wang

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1053-1066, 2023, DOI:10.32604/iasc.2023.038332

    Abstract The main function of the power communication business is to monitor, control and manage the power communication network to ensure normal and stable operation of the power communication network. Communication services related to dispatching data networks and the transmission of fault information or feeder automation have high requirements for delay. If processing time is prolonged, a power business cascade reaction may be triggered. In order to solve the above problems, this paper establishes an edge object-linked agent business deployment model for power communication network to unify the management of data collection, resource allocation and task scheduling within the system, realizes… More >

Displaying 1-10 on page 1 of 30. Per Page