Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (183)
  • Open Access

    ARTICLE

    Inverse Design of Composite Materials Based on Latent Space and Bayesian Optimization

    Xianrui Lyu, Xiaodan Ren*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074388 - 29 January 2026

    Abstract Inverse design of advanced materials represents a pivotal challenge in materials science. Leveraging the latent space of Variational Autoencoders (VAEs) for material optimization has emerged as a significant advancement in the field of material inverse design. However, VAEs are inherently prone to generating blurred images, posing challenges for precise inverse design and microstructure manufacturing. While increasing the dimensionality of the VAE latent space can mitigate reconstruction blurriness to some extent, it simultaneously imposes a substantial burden on target optimization due to an excessively high search space. To address these limitations, this study adopts a Variational… More >

  • Open Access

    ARTICLE

    Integrating Attention Mechanism with Code Structural Affinity and Execution Context Correlation for Automated Bug Repair

    Jinfeng Ji1, Geunseok Yang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071733 - 12 January 2026

    Abstract Automated Program Repair (APR) techniques have shown significant potential in mitigating the cost and complexity associated with debugging by automatically generating corrective patches for software defects. Despite considerable progress in APR methodologies, existing approaches frequently lack contextual awareness of runtime behaviors and structural intricacies inherent in buggy source code. In this paper, we propose a novel APR approach that integrates attention mechanisms within an autoencoder-based framework, explicitly utilizing structural code affinity and execution context correlation derived from stack trace analysis. Our approach begins with an innovative preprocessing pipeline, where code segments and stack traces are… More >

  • Open Access

    ARTICLE

    A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation

    Thierry Mugenzi, Cahit Perkgoz*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.070381 - 10 November 2025

    Abstract Missing data presents a crucial challenge in data analysis, especially in high-dimensional datasets, where missing data often leads to biased conclusions and degraded model performance. In this study, we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision. The proposed loss combines (i) a guided, masked mean squared error focusing on missing entries; (ii) a noise-aware regularization term to improve resilience against data corruption; and (iii) a variance penalty to encourage expressive yet stable reconstructions. We evaluate the proposed model across four missingness mechanisms, such as Missing… More >

  • Open Access

    ARTICLE

    An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process

    Bo Zhu1,#, Enzhi Dong1,#, Zhonghua Cheng1,*, Xianbiao Zhan2, Kexin Jiang1, Rongcai Wang 3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.069194 - 10 November 2025

    Abstract With the increasing complexity of industrial automation, planetary gearboxes play a vital role in large-scale equipment transmission systems, directly impacting operational efficiency and safety. Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment, leading to excessive maintenance costs or potential failure risks. However, existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes. To address these challenges, this study proposes a novel condition-based maintenance framework for planetary gearboxes. A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals, which were then processed using a… More >

  • Open Access

    ARTICLE

    ARAE: An Adaptive Robust AutoEncoder for Network Anomaly Detection

    Chunyong Yin, Williams Kyei*

    Journal of Cyber Security, Vol.7, pp. 615-635, 2025, DOI:10.32604/jcs.2025.072740 - 24 December 2025

    Abstract The evolving sophistication of network threats demands anomaly detection methods that are both robust and adaptive. While autoencoders excel at learning normal traffic patterns, they struggle with complex feature interactions and require manual tuning for different environments. We introduce the Adaptive Robust AutoEncoder (ARAE), a novel framework that dynamically balances reconstruction fidelity with latent space regularization through learnable loss weighting. ARAE incorporates multi-head attention to model feature dependencies and fuses multiple anomaly indicators into an adaptive scoring mechanism. Extensive evaluation on four benchmark datasets demonstrates that ARAE significantly outperforms existing autoencoder variants and classical methods, More >

  • Open Access

    ARTICLE

    Encoder-Guided Latent Space Search Based on Generative Networks for Stereo Disparity Estimation in Surgical Imaging

    Guangyu Xu1,2, Siyuan Xu3, Siyu Lu4,*, Yuxin Liu1, Bo Yang1, Junmin Lyu5, Wenfeng Zheng1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4037-4053, 2025, DOI:10.32604/cmes.2025.074901 - 23 December 2025

    Abstract Robust stereo disparity estimation plays a critical role in minimally invasive surgery, where dynamic soft tissues, specular reflections, and data scarcity pose major challenges to traditional end-to-end deep learning and deformable model-based methods. In this paper, we propose a novel disparity estimation framework that leverages a pretrained StyleGAN generator to represent the disparity manifold of Minimally Invasive Surgery (MIS) scenes and reformulates the stereo matching task as a latent-space optimization problem. Specifically, given a stereo pair, we search for the optimal latent vector in the intermediate latent space of StyleGAN, such that the photometric reconstruction… More >

  • Open Access

    ARTICLE

    DC Disturbance Classification Method Based on Compressed Sensing and Encoder

    Huanan Yu1, Xiang Zhang1,*, Jian Wang2

    Energy Engineering, Vol.122, No.12, pp. 5055-5071, 2025, DOI:10.32604/ee.2025.067152 - 27 November 2025

    Abstract Recent advances in AC/DC hybrid power distribution systems have enhanced convenience in daily life. However, DC distribution introduces significant power quality challenges. To address the identification and classification of DC power quality disturbances, this paper proposes a novel methodology integrating Compressed Sensing (CS) with an enhanced Stacked Denoising Autoencoder (SDAE). The proposed approach first employs MATLAB/SIMULINK to model the DC distribution network and generate DC power quality disturbance signals. The measured original signals are then reconstructed using the compressive sensing-based generalized orthogonal matching pursuit (GOMP) algorithm to obtain sparse vectors as the final dataset. Subsequently, More >

  • Open Access

    ARTICLE

    Wavelet Transform-Based Bayesian Inference Learning with Conditional Variational Autoencoder for Mitigating Injection Attack in 6G Edge Network

    Binu Sudhakaran Pillai1, Raghavendra Kulkarni2, Venkata Satya Suresh kumar Kondeti2, Surendran Rajendran3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1141-1166, 2025, DOI:10.32604/cmes.2025.070348 - 30 October 2025

    Abstract Future 6G communications will open up opportunities for innovative applications, including Cyber-Physical Systems, edge computing, supporting Industry 5.0, and digital agriculture. While automation is creating efficiencies, it can also create new cyber threats, such as vulnerabilities in trust and malicious node injection. Denial-of-Service (DoS) attacks can stop many forms of operations by overwhelming networks and systems with data noise. Current anomaly detection methods require extensive software changes and only detect static threats. Data collection is important for being accurate, but it is often a slow, tedious, and sometimes inefficient process. This paper proposes a new… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Inverse Design: Exploring Latent Space Information for Geometric Structure Optimization

    Nguyen Dong Phuong1, Nanthakumar Srivilliputtur Subbiah1, Yabin Jin2, Xiaoying Zhuang1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 263-303, 2025, DOI:10.32604/cmes.2025.067100 - 30 October 2025

    Abstract Traditional inverse neural network (INN) approaches for inverse design typically require auxiliary feedforward networks, leading to increased computational complexity and architectural dependencies. This study introduces a standalone INN methodology that eliminates the need for feedforward networks while maintaining high reconstruction accuracy. The approach integrates Principal Component Analysis (PCA) and Partial Least Squares (PLS) for optimized feature space learning, enabling the standalone INN to effectively capture bidirectional mappings between geometric parameters and mechanical properties. Validation using established numerical datasets demonstrates that the standalone INN architecture achieves reconstruction accuracy equal or better than traditional tandem approaches while More >

  • Open Access

    ARTICLE

    Deep Auto-Encoder Based Intelligent and Secure Time Synchronization Protocol (iSTSP) for Security-Critical Time-Sensitive WSNs

    Ramadan Abdul-Rashid1, Mohd Amiruddin Abd Rahman1,*, Abdulaziz Yagoub Barnawi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3213-3250, 2025, DOI:10.32604/cmes.2025.066589 - 30 September 2025

    Abstract Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks (WSNs), especially in security-critical, time-sensitive applications. However, most existing protocols degrade substantially under malicious interference. We introduce iSTSP, an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust, precise synchronization even in hostile environments: (1) trust preprocessing that filters node participation using behavioral trust scoring; (2) anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time; (3) reliability-weighted consensus that prioritizes high-trust nodes during time aggregation; and (4) convergence-optimized synchronization… More >

Displaying 1-10 on page 1 of 183. Per Page