Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (137)
  • Open Access

    ARTICLE

    Feature Enhanced Stacked Auto Encoder for Diseases Detection in Brain MRI

    Umair Muneer Butt1,2,*, Rimsha Arif2, Sukumar Letchmunan1,*, Babur Hayat Malik2, Muhammad Adil Butt2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2551-2570, 2023, DOI:10.32604/cmc.2023.039164

    Abstract The detection of brain disease is an essential issue in medical and research areas. Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging (MRI) images. These techniques involve training neural networks on large datasets of MRI images, allowing the networks to learn patterns and features indicative of different brain diseases. However, several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques. This paper implements a Feature Enhanced Stacked Auto Encoder (FESAE) model to detect brain diseases. The standard stack auto encoder’s results are… More >

  • Open Access

    ARTICLE

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

    Qiankun Zuo1,4, Junhua Hu2, Yudong Zhang3,*, Junren Pan4, Changhong Jing4, Xuhang Chen5, Xiaobo Meng6, Jin Hong7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2129-2147, 2023, DOI:10.32604/cmes.2023.028732

    Abstract The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven models. Specifically, the label distribution… More > Graphic Abstract

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

  • Open Access

    REVIEW

    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting certain components in the traditional… More >

  • Open Access

    ARTICLE

    Missing Value Imputation Model Based on Adversarial Autoencoder Using Spatiotemporal Feature Extraction

    Dong-Hoon Shin1, Seo-El Lee2, Byeong-Uk Jeon1, Kyungyong Chung3,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1925-1940, 2023, DOI:10.32604/iasc.2023.039317

    Abstract Recently, the importance of data analysis has increased significantly due to the rapid data increase. In particular, vehicle communication data, considered a significant challenge in Intelligent Transportation Systems (ITS), has spatiotemporal characteristics and many missing values. High missing values in data lead to the decreased predictive performance of models. Existing missing value imputation models ignore the topology of transportation networks due to the structural connection of road networks, although physical distances are close in spatiotemporal image data. Additionally, the learning process of missing value imputation models requires complete data, but there are limitations in securing complete vehicle communication data. This… More >

  • Open Access

    ARTICLE

    MEM-TET: Improved Triplet Network for Intrusion Detection System

    Weifei Wang1, Jinguo Li1,*, Na Zhao2, Min Liu1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 471-487, 2023, DOI:10.32604/cmc.2023.039733

    Abstract With the advancement of network communication technology, network traffic shows explosive growth. Consequently, network attacks occur frequently. Network intrusion detection systems are still the primary means of detecting attacks. However, two challenges continue to stymie the development of a viable network intrusion detection system: imbalanced training data and new undiscovered attacks. Therefore, this study proposes a unique deep learning-based intrusion detection method. We use two independent in-memory autoencoders trained on regular network traffic and attacks to capture the dynamic relationship between traffic features in the presence of unbalanced training data. Then the original data is fed into the triplet network… More >

  • Open Access

    ARTICLE

    Early Diagnosis of Lung Tumors for Extending Patients’ Life Using Deep Neural Networks

    A. Manju1, R. kaladevi2, Shanmugasundaram Hariharan3, Shih-Yu Chen4,5,*, Vinay Kukreja6, Pradip Kumar Sharma7, Fayez Alqahtani8, Amr Tolba9, Jin Wang10

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 993-1007, 2023, DOI:10.32604/cmc.2023.039567

    Abstract The medical community has more concern on lung cancer analysis. Medical experts’ physical segmentation of lung cancers is time-consuming and needs to be automated. The research study’s objective is to diagnose lung tumors at an early stage to extend the life of humans using deep learning techniques. Computer-Aided Diagnostic (CAD) system aids in the diagnosis and shortens the time necessary to detect the tumor detected. The application of Deep Neural Networks (DNN) has also been exhibited as an excellent and effective method in classification and segmentation tasks. This research aims to separate lung cancers from images of Magnetic Resonance Imaging… More >

  • Open Access

    ARTICLE

    Alzheimer’s Disease Stage Classification Using a Deep Transfer Learning and Sparse Auto Encoder Method

    Deepthi K. Oommen*, J. Arunnehru

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 793-811, 2023, DOI:10.32604/cmc.2023.038640

    Abstract Alzheimer’s Disease (AD) is a progressive neurological disease. Early diagnosis of this illness using conventional methods is very challenging. Deep Learning (DL) is one of the finest solutions for improving diagnostic procedures’ performance and forecast accuracy. The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups. In light of research investigations, it is vital to consider age as one of the key criteria when choosing the subjects. The younger subjects are more susceptible to the perishable side than the older onset. The proposed investigation concentrated on the younger onset. The research used… More >

  • Open Access

    ARTICLE

    Unsupervised Anomaly Detection Approach Based on Adversarial Memory Autoencoders for Multivariate Time Series

    Tianzi Zhao1,2,3,4, Liang Jin1,2,3,*, Xiaofeng Zhou1,2,3, Shuai Li1,2,3, Shurui Liu1,2,3,4, Jiang Zhu1,2,3

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 329-346, 2023, DOI:10.32604/cmc.2023.038595

    Abstract The widespread usage of Cyber Physical Systems (CPSs) generates a vast volume of time series data, and precisely determining anomalies in the data is critical for practical production. Autoencoder is the mainstream method for time series anomaly detection, and the anomaly is judged by reconstruction error. However, due to the strong generalization ability of neural networks, some abnormal samples close to normal samples may be judged as normal, which fails to detect the abnormality. In addition, the dataset rarely provides sufficient anomaly labels. This research proposes an unsupervised anomaly detection approach based on adversarial memory autoencoders for multivariate time series… More >

  • Open Access

    ARTICLE

    Analyzing Arabic Twitter-Based Patient Experience Sentiments Using Multi-Dialect Arabic Bidirectional Encoder Representations from Transformers

    Sarab AlMuhaideb*, Yasmeen AlNegheimish, Taif AlOmar, Reem AlSabti, Maha AlKathery, Ghala AlOlyyan

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 195-220, 2023, DOI:10.32604/cmc.2023.038368

    Abstract Healthcare organizations rely on patients’ feedback and experiences to evaluate their performance and services, thereby allowing such organizations to improve inadequate services and address any shortcomings. According to the literature, social networks and particularly Twitter are effective platforms for gathering public opinions. Moreover, recent studies have used natural language processing to measure sentiments in text segments collected from Twitter to capture public opinions about various sectors, including healthcare. The present study aimed to analyze Arabic Twitter-based patient experience sentiments and to introduce an Arabic patient experience corpus. The authors collected 12,400 tweets from Arabic patients discussing patient experiences related to… More >

  • Open Access

    ARTICLE

    Visual Motion Segmentation in Crowd Videos Based on Spatial-Angular Stacked Sparse Autoencoders

    Adel Hafeezallah1, Ahlam Al-Dhamari2,3,*, Syed Abd Rahman Abu-Bakar2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 593-611, 2023, DOI:10.32604/csse.2023.039479

    Abstract Visual motion segmentation (VMS) is an important and key part of many intelligent crowd systems. It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd stampedes and crashes, which pose a serious risk to public safety and have resulted in numerous fatalities over the past few decades. Trajectory clustering has become one of the most popular methods in VMS. However, complex data, such as a large number of samples and parameters, makes it difficult for trajectory clustering to work well with accurate motion segmentation results. This study introduces a… More >

Displaying 21-30 on page 3 of 137. Per Page