Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (150)
  • Open Access

    ARTICLE

    A Time Series Intrusion Detection Method Based on SSAE, TCN and Bi-LSTM

    Zhenxiang He*, Xunxi Wang, Chunwei Li

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 845-871, 2024, DOI:10.32604/cmc.2023.046607 - 30 January 2024

    Abstract In the fast-evolving landscape of digital networks, the incidence of network intrusions has escalated alarmingly. Simultaneously, the crucial role of time series data in intrusion detection remains largely underappreciated, with most systems failing to capture the time-bound nuances of network traffic. This leads to compromised detection accuracy and overlooked temporal patterns. Addressing this gap, we introduce a novel SSAE-TCN-BiLSTM (STL) model that integrates time series analysis, significantly enhancing detection capabilities. Our approach reduces feature dimensionality with a Stacked Sparse Autoencoder (SSAE) and extracts temporally relevant features through a Temporal Convolutional Network (TCN) and Bidirectional Long… More >

  • Open Access

    ARTICLE

    A Video Captioning Method by Semantic Topic-Guided Generation

    Ou Ye, Xinli Wei, Zhenhua Yu*, Yan Fu, Ying Yang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1071-1093, 2024, DOI:10.32604/cmc.2023.046418 - 30 January 2024

    Abstract In the video captioning methods based on an encoder-decoder, limited visual features are extracted by an encoder, and a natural sentence of the video content is generated using a decoder. However, this kind of method is dependent on a single video input source and few visual labels, and there is a problem with semantic alignment between video contents and generated natural sentences, which are not suitable for accurately comprehending and describing the video contents. To address this issue, this paper proposes a video captioning method by semantic topic-guided generation. First, a 3D convolutional neural network… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection Using Improved Deep Learning Models

    Sumaya S. Sulaiman1,2,*, Ibraheem Nadher3, Sarab M. Hameed2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1049-1069, 2024, DOI:10.32604/cmc.2023.046051 - 30 January 2024

    Abstract Fraud of credit cards is a major issue for financial organizations and individuals. As fraudulent actions become more complex, a demand for better fraud detection systems is rising. Deep learning approaches have shown promise in several fields, including detecting credit card fraud. However, the efficacy of these models is heavily dependent on the careful selection of appropriate hyperparameters. This paper introduces models that integrate deep learning models with hyperparameter tuning techniques to learn the patterns and relationships within credit card transaction data, thereby improving fraud detection. Three deep learning models: AutoEncoder (AE), Convolution Neural Network… More >

  • Open Access

    ARTICLE

    Deep Autoencoder-Based Hybrid Network for Building Energy Consumption Forecasting

    Noman Khan1,2, Samee Ullah Khan1,2, Sung Wook Baik1,2,*

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 153-173, 2024, DOI:10.32604/csse.2023.039407 - 26 January 2024

    Abstract Energy management systems for residential and commercial buildings must use an appropriate and efficient model to predict energy consumption accurately. To deal with the challenges in power management, the short-term Power Consumption (PC) prediction for household appliances plays a vital role in improving domestic and commercial energy efficiency. Big data applications and analytics have shown that data-driven load forecasting approaches can forecast PC in commercial and residential sectors and recognize patterns of electric usage in complex conditions. However, traditional Machine Learning (ML) algorithms and their features engineering procedure emphasize the practice of inefficient and ineffective… More >

  • Open Access

    ARTICLE

    An Innovative Deep Architecture for Flight Safety Risk Assessment Based on Time Series Data

    Hong Sun1, Fangquan Yang2, Peiwen Zhang3,*, Yang Jiao4, Yunxiang Zhao5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2549-2569, 2024, DOI:10.32604/cmes.2023.030131 - 15 December 2023

    Abstract With the development of the integration of aviation safety and artificial intelligence, research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk management, but searching for an efficient and accurate risk assessment algorithm has become a challenge for the civil aviation industry. Therefore, an improved risk assessment algorithm (PS-AE-LSTM) based on long short-term memory network (LSTM) with autoencoder (AE) is proposed for the various supervised deep learning algorithms in flight safety that cannot adequately address the problem of the quality on risk level labels. Firstly, based on… More >

  • Open Access

    ARTICLE

    A Method of Integrating Length Constraints into Encoder-Decoder Transformer for Abstractive Text Summarization

    Ngoc-Khuong Nguyen1,2, Dac-Nhuong Le1, Viet-Ha Nguyen2, Anh-Cuong Le3,*

    Intelligent Automation & Soft Computing, Vol.38, No.1, pp. 1-18, 2023, DOI:10.32604/iasc.2023.037083 - 26 January 2024

    Abstract Text summarization aims to generate a concise version of the original text. The longer the summary text is, the more detailed it will be from the original text, and this depends on the intended use. Therefore, the problem of generating summary texts with desired lengths is a vital task to put the research into practice. To solve this problem, in this paper, we propose a new method to integrate the desired length of the summarized text into the encoder-decoder model for the abstractive text summarization problem. This length parameter is integrated into the encoding phase More >

  • Open Access

    ARTICLE

    A Fusion of Residual Blocks and Stack Auto Encoder Features for Stomach Cancer Classification

    Abdul Haseeb1, Muhammad Attique Khan2,*, Majed Alhaisoni3, Ghadah Aldehim4, Leila Jamel4, Usman Tariq5, Taerang Kim6, Jae-Hyuk Cha6

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3895-3920, 2023, DOI:10.32604/cmc.2023.045244 - 26 December 2023

    Abstract Diagnosing gastrointestinal cancer by classical means is a hazardous procedure. Years have witnessed several computerized solutions for stomach disease detection and classification. However, the existing techniques faced challenges, such as irrelevant feature extraction, high similarity among different disease symptoms, and the least-important features from a single source. This paper designed a new deep learning-based architecture based on the fusion of two models, Residual blocks and Auto Encoder. First, the Hyper-Kvasir dataset was employed to evaluate the proposed work. The research selected a pre-trained convolutional neural network (CNN) model and improved it with several residual blocks.… More >

  • Open Access

    ARTICLE

    A Novel Unsupervised MRI Synthetic CT Image Generation Framework with Registration Network

    Liwei Deng1, Henan Sun1, Jing Wang2, Sijuan Huang3, Xin Yang3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2271-2287, 2023, DOI:10.32604/cmc.2023.039062 - 29 November 2023

    Abstract In recent years, radiotherapy based only on Magnetic Resonance (MR) images has become a hot spot for radiotherapy planning research in the current medical field. However, functional computed tomography (CT) is still needed for dose calculation in the clinic. Recent deep-learning approaches to synthesized CT images from MR images have raised much research interest, making radiotherapy based only on MR images possible. In this paper, we proposed a novel unsupervised image synthesis framework with registration networks. This paper aims to enforce the constraints between the reconstructed image and the input image by registering the reconstructed… More >

  • Open Access

    ARTICLE

    Optimizing Fully Convolutional Encoder-Decoder Network for Segmentation of Diabetic Eye Disease

    Abdul Qadir Khan1, Guangmin Sun1,*, Yu Li1, Anas Bilal2, Malik Abdul Manan1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2481-2504, 2023, DOI:10.32604/cmc.2023.043239 - 29 November 2023

    Abstract In the emerging field of image segmentation, Fully Convolutional Networks (FCNs) have recently become prominent. However, their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparameters, which can often be a cumbersome manual task. The main aim of this study is to propose a more efficient, less labour-intensive approach to hyperparameter optimization in FCNs for segmenting fundus images. To this end, our research introduces a hyperparameter-optimized Fully Convolutional Encoder-Decoder Network (FCEDN). The optimization is handled by a novel Genetic Grey Wolf Optimization (G-GWO) algorithm. This algorithm employs the Genetic Algorithm (GA) to… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Stacked Auto-Encoder with Dynamic Differential Annealed Optimization for Skin Lesion Diagnosis

    Ahmad Alassaf*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2773-2789, 2023, DOI:10.32604/csse.2023.035899 - 09 November 2023

    Abstract Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare. Deep Learning (DL) models with unsupervised learning concepts have been proposed because high-quality feature extraction and adequate labelled details significantly influence shallow models. On the other hand, skin lesion-based segregation and disintegration procedures play an essential role in earlier skin cancer detection. However, artefacts, an unclear boundary, poor contrast, and different lesion sizes make detection difficult. To address the issues in skin lesion diagnosis, this study creates the UDLS-DDOA model, an intelligent Unsupervised Deep Learning-based Stacked Auto-encoder (UDLS) optimized by Dynamic Differential… More >

Displaying 21-30 on page 3 of 150. Per Page