Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (183)
  • Open Access

    ARTICLE

    An Auto Encoder-Enhanced Stacked Ensemble for Intrusion Detection in Healthcare Networks

    Fatma S. Alrayes1, Mohammed Zakariah2,*, Mohammed K. Alzaylaee3, Syed Umar Amin4, Zafar Iqbal Khan4

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3457-3484, 2025, DOI:10.32604/cmc.2025.068599 - 23 September 2025

    Abstract Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information. The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks. The WUSTL-EHMS 2020 dataset trains and evaluates the model, constituting an imbalanced class distribution (87.46% normal traffic and 12.53% intrusion attacks). To address this imbalance, the study balances the effect of training Bias through Stratified K-fold cross-validation (K = 5), so that… More >

  • Open Access

    ARTICLE

    Adapting Convolutional Autoencoder for DDoS Attack Detection via Joint Reconstruction Learning and Refined Anomaly Scoring

    Seulki Han1, Sangho Son2, Won Sakong2, Haemin Jung3,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2893-2912, 2025, DOI:10.32604/cmc.2025.067211 - 23 September 2025

    Abstract As cyber threats become increasingly sophisticated, Distributed Denial-of-Service (DDoS) attacks continue to pose a serious threat to network infrastructure, often disrupting critical services through overwhelming traffic. Although unsupervised anomaly detection using convolutional autoencoders (CAEs) has gained attention for its ability to model normal network behavior without requiring labeled data, conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring. To address these limitations, we propose CA-CAE, a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring. Our… More >

  • Open Access

    ARTICLE

    Adaptive Fusion Neural Networks for Sparse-Angle X-Ray 3D Reconstruction

    Shaoyong Hong1, Bo Yang2, Yan Chen2, Hao Quan3, Shan Liu4, Minyi Tang5,*, Jiawei Tian6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1091-1112, 2025, DOI:10.32604/cmes.2025.066165 - 31 July 2025

    Abstract 3D medical image reconstruction has significantly enhanced diagnostic accuracy, yet the reliance on densely sampled projection data remains a major limitation in clinical practice. Sparse-angle X-ray imaging, though safer and faster, poses challenges for accurate volumetric reconstruction due to limited spatial information. This study proposes a 3D reconstruction neural network based on adaptive weight fusion (AdapFusionNet) to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images. To address the issue of spatial inconsistency in multi-angle image reconstruction, an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and… More >

  • Open Access

    ARTICLE

    Renovated Random Attribute-Based Fennec Fox Optimized Deep Learning Framework in Low-Rate DoS Attack Detection in IoT

    Prasanalakshmi Balaji1,2, Sangita Babu3, Maode Ma4, Zhaoxi Fang2, Syarifah Bahiyah Rahayu5,6,*, Mariyam Aysha Bivi1, Mahaveerakannan Renganathan7

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5831-5858, 2025, DOI:10.32604/cmc.2025.065260 - 30 July 2025

    Abstract The rapid progression of the Internet of Things (IoT) technology enables its application across various sectors. However, IoT devices typically acquire inadequate computing power and user interfaces, making them susceptible to security threats. One significant risk to cloud networks is Distributed Denial-of-Service (DoS) attacks, where attackers aim to overcome a target system with excessive data and requests. Among these, low-rate DoS (LR-DoS) attacks present a particular challenge to detection. By sending bursts of attacks at irregular intervals, LR-DoS significantly degrades the targeted system’s Quality of Service (QoS). The low-rate nature of these attacks confuses their… More >

  • Open Access

    ARTICLE

    A Hybrid Wasserstein GAN and Autoencoder Model for Robust Intrusion Detection in IoT

    Mohammed S. Alshehri1,*, Oumaima Saidani2, Wajdan Al Malwi3, Fatima Asiri3, Shahid Latif 4, Aizaz Ahmad Khattak5, Jawad Ahmad6

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3899-3920, 2025, DOI:10.32604/cmes.2025.064874 - 30 June 2025

    Abstract The emergence of Generative Adversarial Network (GAN) techniques has garnered significant attention from the research community for the development of Intrusion Detection Systems (IDS). However, conventional GAN-based IDS models face several challenges, including training instability, high computational costs, and system failures. To address these limitations, we propose a Hybrid Wasserstein GAN and Autoencoder Model (WGAN-AE) for intrusion detection. The proposed framework leverages the stability of WGAN and the feature extraction capabilities of the Autoencoder Model. The model was trained and evaluated using two recent benchmark datasets, 5GNIDD and IDSIoT2024. When trained on the 5GNIDD dataset,… More >

  • Open Access

    ARTICLE

    Unsupervised Anomaly Detection in Time Series Data via Enhanced VAE-Transformer Framework

    Chunhao Zhang1,2, Bin Xie2,3,*, Zhibin Huo1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 843-860, 2025, DOI:10.32604/cmc.2025.063151 - 09 June 2025

    Abstract Time series anomaly detection is crucial in finance, healthcare, and industrial monitoring. However, traditional methods often face challenges when handling time series data, such as limited feature extraction capability, poor temporal dependency handling, and suboptimal real-time performance, sometimes even neglecting the temporal relationships between data. To address these issues and improve anomaly detection performance by better capturing temporal dependencies, we propose an unsupervised time series anomaly detection method, VLT-Anomaly. First, we enhance the Variational Autoencoder (VAE) module by redesigning its network structure to better suit anomaly detection through data reconstruction. We introduce hyperparameters to control… More >

  • Open Access

    ARTICLE

    Pyramid–MixNet: Integrate Attention into Encoder-Decoder Transformer Framework for Automatic Railway Surface Damage Segmentation

    Hui Luo, Wenqing Li*, Wei Zeng

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1567-1580, 2025, DOI:10.32604/cmc.2025.062949 - 09 June 2025

    Abstract Rail surface damage is a critical component of high-speed railway infrastructure, directly affecting train operational stability and safety. Existing methods face limitations in accuracy and speed for small-sample, multi-category, and multi-scale target segmentation tasks. To address these challenges, this paper proposes Pyramid-MixNet, an intelligent segmentation model for high-speed rail surface damage, leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms. The encoding network integrates Spatial Reduction Masked Multi-Head Attention (SRMMHA) to enhance global feature extraction while reducing trainable parameters. The decoding network incorporates Mix-Attention (MA), enabling multi-scale structural understanding and More >

  • Open Access

    ARTICLE

    Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks

    Min-Gyu Kim1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2391-2415, 2025, DOI:10.32604/cmes.2025.063558 - 30 May 2025

    Abstract This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service (DDoS) attacks in 5th generation technology standard (5G) slicing networks. The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data. These representations are then used as input for a support vector machine (SVM)-based metadata classifier, enabling precise detection of attack traffic. This architecture is designed to achieve both high detection accuracy and training efficiency, while adapting flexibly to the diverse service requirements and complexity of 5G network… More >

  • Open Access

    ARTICLE

    FS-MSFormer: Image Dehazing Based on Frequency Selection and Multi-Branch Efficient Transformer

    Chunming Tang*, Yu Wang

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5115-5128, 2025, DOI:10.32604/cmc.2025.062328 - 19 May 2025

    Abstract Image dehazing aims to generate clear images critical for subsequent visual tasks. CNNs have made significant progress in the field of image dehazing. However, due to the inherent limitations of convolution operations, it is challenging to effectively model global context and long-range spatial dependencies effectively. Although the Transformer can address this issue, it faces the challenge of excessive computational requirements. Therefore, we propose the FS-MSFormer network, an asymmetric encoder-decoder architecture that combines the advantages of CNNs and Transformers to improve dehazing performance. Specifically, the encoding process employs two branches for multi-scale feature extraction. One branch… More >

  • Open Access

    ARTICLE

    Plant Disease Detection and Classification Using Hybrid Model Based on Convolutional Auto Encoder and Convolutional Neural Network

    Tajinder Kumar1, Sarbjit Kaur2, Purushottam Sharma3,*, Ankita Chhikara4, Xiaochun Cheng5,*, Sachin Lalar6, Vikram Verma7

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5219-5234, 2025, DOI:10.32604/cmc.2025.062010 - 19 May 2025

    Abstract During its growth stage, the plant is exposed to various diseases. Detection and early detection of crop diseases is a major challenge in the horticulture industry. Crop infections can harm total crop yield and reduce farmers’ income if not identified early. Today’s approved method involves a professional plant pathologist to diagnose the disease by visual inspection of the afflicted plant leaves. This is an excellent use case for Community Assessment and Treatment Services (CATS) due to the lengthy manual disease diagnosis process and the accuracy of identification is directly proportional to the skills of pathologists.… More >

Displaying 11-20 on page 2 of 183. Per Page