Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (169)
  • Open Access

    ARTICLE

    An Explainable Autoencoder-Based Feature Extraction Combined with CNN-LSTM-PSO Model for Improved Predictive Maintenance

    Ishaani Priyadarshini*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 635-659, 2025, DOI:10.32604/cmc.2025.061062 - 26 March 2025

    Abstract Predictive maintenance plays a crucial role in preventing equipment failures and minimizing operational downtime in modern industries. However, traditional predictive maintenance methods often face challenges in adapting to diverse industrial environments and ensuring the transparency and fairness of their predictions. This paper presents a novel predictive maintenance framework that integrates deep learning and optimization techniques while addressing key ethical considerations, such as transparency, fairness, and explainability, in artificial intelligence driven decision-making. The framework employs an Autoencoder for feature reduction, a Convolutional Neural Network for pattern recognition, and a Long Short-Term Memory network for temporal analysis.… More >

  • Open Access

    ARTICLE

    Semi-Supervised New Intention Discovery for Syntactic Elimination and Fusion in Elastic Neighborhoods

    Di Wu*, Liming Feng, Xiaoyu Wang

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 977-999, 2025, DOI:10.32604/cmc.2025.060319 - 26 March 2025

    Abstract Semi-supervised new intent discovery is a significant research focus in natural language understanding. To address the limitations of current semi-supervised training data and the underutilization of implicit information, a Semi-supervised New Intent Discovery for Elastic Neighborhood Syntactic Elimination and Fusion model (SNID-ENSEF) is proposed. Syntactic elimination contrast learning leverages verb-dominant syntactic features, systematically replacing specific words to enhance data diversity. The radius of the positive sample neighborhood is elastically adjusted to eliminate invalid samples and improve training efficiency. A neighborhood sample fusion strategy, based on sample distribution patterns, dynamically adjusts neighborhood size and fuses sample More >

  • Open Access

    ARTICLE

    Hybrid Memory-Enhanced Autoencoder with Adversarial Training for Anomaly Detection in Virtual Power Plants

    Yuqiao Liu1, Chen Pan1, YeonJae Oh2,*, Chang Gyoon Lim1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4593-4629, 2025, DOI:10.32604/cmc.2025.061196 - 06 March 2025

    Abstract Virtual Power Plants (VPPs) are integral to modern energy systems, providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data. Traditional anomaly detection methodologies often need to adequately handle these fluctuations from solar radiation and ambient temperature variations. We introduce the Memory-Enhanced Autoencoder with Adversarial Training (MemAAE) model to overcome these limitations, designed explicitly for robust anomaly detection in VPP environments. The MemAAE model integrates three principal components: an LSTM-based autoencoder that effectively captures temporal dynamics to distinguish between normal and anomalous behaviors, an adversarial training module that… More >

  • Open Access

    ARTICLE

    ACSF-ED: Adaptive Cross-Scale Fusion Encoder-Decoder for Spatio-Temporal Action Detection

    Wenju Wang1, Zehua Gu1,*, Bang Tang1, Sen Wang2, Jianfei Hao2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2389-2414, 2025, DOI:10.32604/cmc.2024.057392 - 17 February 2025

    Abstract Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A More >

  • Open Access

    ARTICLE

    Multi-Head Encoder Shared Model Integrating Intent and Emotion for Dialogue Summarization

    Xinlai Xing, Junliang Chen*, Xiaochuan Zhang, Shuran Zhou, Runqing Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2275-2292, 2025, DOI:10.32604/cmc.2024.056877 - 17 February 2025

    Abstract In task-oriented dialogue systems, intent, emotion, and actions are crucial elements of user activity. Analyzing the relationships among these elements to control and manage task-oriented dialogue systems is a challenging task. However, previous work has primarily focused on the independent recognition of user intent and emotion, making it difficult to simultaneously track both aspects in the dialogue tracking module and to effectively utilize user emotions in subsequent dialogue strategies. We propose a Multi-Head Encoder Shared Model (MESM) that dynamically integrates features from emotion and intent encoders through a feature fusioner. Addressing the scarcity of datasets More >

  • Open Access

    ARTICLE

    Robust Network Security: A Deep Learning Approach to Intrusion Detection in IoT

    Ammar Odeh*, Anas Abu Taleb

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4149-4169, 2024, DOI:10.32604/cmc.2024.058052 - 19 December 2024

    Abstract The proliferation of Internet of Things (IoT) technology has exponentially increased the number of devices interconnected over networks, thereby escalating the potential vectors for cybersecurity threats. In response, this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks (CNN), Autoencoders, and Long Short-Term Memory (LSTM) networks—to engineer an advanced Intrusion Detection System (IDS) specifically designed for IoT environments. Utilizing the comprehensive UNSW-NB15 dataset, which encompasses 49 distinct features representing varied network traffic characteristics, our methodology focused on meticulous data preprocessing including cleaning, normalization, and strategic feature selection to enhance model performance. A robust… More >

  • Open Access

    ARTICLE

    Contribution Tracking Feature Selection (CTFS) Based on the Fusion of Sparse Autoencoder and Mutual Information

    Yifan Yu, Dazhi Wang*, Yanhua Chen, Hongfeng Wang, Min Huang

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3761-3780, 2024, DOI:10.32604/cmc.2024.057103 - 19 December 2024

    Abstract For data mining tasks on large-scale data, feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance. Traditional wrapper feature selection methodologies typically require extensive model training and evaluation, which cannot deliver desired outcomes within a reasonable computing time. In this paper, an innovative wrapper approach termed Contribution Tracking Feature Selection (CTFS) is proposed for feature selection of large-scale data, which can locate informative features without population-level evolution. In other words, fewer evaluations are needed for CTFS compared to other evolutionary methods. We initially More >

  • Open Access

    ARTICLE

    A DDoS Identification Method for Unbalanced Data CVWGG

    Haizhen Wang1,2,*, Na Jia1,2, Yang He1, Pan Tan1,2

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3825-3851, 2024, DOI:10.32604/cmc.2024.055497 - 19 December 2024

    Abstract As the popularity and dependence on the Internet increase, DDoS (distributed denial of service) attacks seriously threaten network security. By accurately distinguishing between different types of DDoS attacks, targeted defense strategies can be formulated, significantly improving network protection efficiency. DDoS attacks usually manifest as an abnormal increase in network traffic, and their diverse types of attacks, along with a severe data imbalance, make it difficult for traditional classification methods to effectively identify a small number of attack types. To solve this problem, this paper proposes a DDoS recognition method CVWGG (Conditional Variational Autoencoder-Wasserstein Generative Adversarial… More >

  • Open Access

    ARTICLE

    Image Captioning Using Multimodal Deep Learning Approach

    Rihem Farkh1,*, Ghislain Oudinet1, Yasser Foued2

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3951-3968, 2024, DOI:10.32604/cmc.2024.053245 - 19 December 2024

    Abstract The process of generating descriptive captions for images has witnessed significant advancements in last years, owing to the progress in deep learning techniques. Despite significant advancements, the task of thoroughly grasping image content and producing coherent, contextually relevant captions continues to pose a substantial challenge. In this paper, we introduce a novel multimodal method for image captioning by integrating three powerful deep learning architectures: YOLOv8 (You Only Look Once) for robust object detection, EfficientNetB7 for efficient feature extraction, and Transformers for effective sequence modeling. Our proposed model combines the strengths of YOLOv8 in detecting objects,… More >

  • Open Access

    ARTICLE

    AI-Driven Prioritization and Filtering of Windows Artifacts for Enhanced Digital Forensics

    Juhwan Kim, Baehoon Son, Jihyeon Yu, Joobeom Yun*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3371-3393, 2024, DOI:10.32604/cmc.2024.057234 - 18 November 2024

    Abstract Digital forensics aims to uncover evidence of cybercrimes within compromised systems. These cybercrimes are often perpetrated through the deployment of malware, which inevitably leaves discernible traces within the compromised systems. Forensic analysts are tasked with extracting and subsequently analyzing data, termed as artifacts, from these systems to gather evidence. Therefore, forensic analysts must sift through extensive datasets to isolate pertinent evidence. However, manually identifying suspicious traces among numerous artifacts is time-consuming and labor-intensive. Previous studies addressed such inefficiencies by integrating artificial intelligence (AI) technologies into digital forensics. Despite the efforts in previous studies, artifacts were… More >

Displaying 11-20 on page 2 of 169. Per Page