Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (154)
  • Open Access

    ARTICLE

    A Fusion of Residual Blocks and Stack Auto Encoder Features for Stomach Cancer Classification

    Abdul Haseeb1, Muhammad Attique Khan2,*, Majed Alhaisoni3, Ghadah Aldehim4, Leila Jamel4, Usman Tariq5, Taerang Kim6, Jae-Hyuk Cha6

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3895-3920, 2023, DOI:10.32604/cmc.2023.045244 - 26 December 2023

    Abstract Diagnosing gastrointestinal cancer by classical means is a hazardous procedure. Years have witnessed several computerized solutions for stomach disease detection and classification. However, the existing techniques faced challenges, such as irrelevant feature extraction, high similarity among different disease symptoms, and the least-important features from a single source. This paper designed a new deep learning-based architecture based on the fusion of two models, Residual blocks and Auto Encoder. First, the Hyper-Kvasir dataset was employed to evaluate the proposed work. The research selected a pre-trained convolutional neural network (CNN) model and improved it with several residual blocks.… More >

  • Open Access

    ARTICLE

    A Novel Unsupervised MRI Synthetic CT Image Generation Framework with Registration Network

    Liwei Deng1, Henan Sun1, Jing Wang2, Sijuan Huang3, Xin Yang3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2271-2287, 2023, DOI:10.32604/cmc.2023.039062 - 29 November 2023

    Abstract In recent years, radiotherapy based only on Magnetic Resonance (MR) images has become a hot spot for radiotherapy planning research in the current medical field. However, functional computed tomography (CT) is still needed for dose calculation in the clinic. Recent deep-learning approaches to synthesized CT images from MR images have raised much research interest, making radiotherapy based only on MR images possible. In this paper, we proposed a novel unsupervised image synthesis framework with registration networks. This paper aims to enforce the constraints between the reconstructed image and the input image by registering the reconstructed… More >

  • Open Access

    ARTICLE

    Optimizing Fully Convolutional Encoder-Decoder Network for Segmentation of Diabetic Eye Disease

    Abdul Qadir Khan1, Guangmin Sun1,*, Yu Li1, Anas Bilal2, Malik Abdul Manan1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2481-2504, 2023, DOI:10.32604/cmc.2023.043239 - 29 November 2023

    Abstract In the emerging field of image segmentation, Fully Convolutional Networks (FCNs) have recently become prominent. However, their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparameters, which can often be a cumbersome manual task. The main aim of this study is to propose a more efficient, less labour-intensive approach to hyperparameter optimization in FCNs for segmenting fundus images. To this end, our research introduces a hyperparameter-optimized Fully Convolutional Encoder-Decoder Network (FCEDN). The optimization is handled by a novel Genetic Grey Wolf Optimization (G-GWO) algorithm. This algorithm employs the Genetic Algorithm (GA) to… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Stacked Auto-Encoder with Dynamic Differential Annealed Optimization for Skin Lesion Diagnosis

    Ahmad Alassaf*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2773-2789, 2023, DOI:10.32604/csse.2023.035899 - 09 November 2023

    Abstract Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare. Deep Learning (DL) models with unsupervised learning concepts have been proposed because high-quality feature extraction and adequate labelled details significantly influence shallow models. On the other hand, skin lesion-based segregation and disintegration procedures play an essential role in earlier skin cancer detection. However, artefacts, an unclear boundary, poor contrast, and different lesion sizes make detection difficult. To address the issues in skin lesion diagnosis, this study creates the UDLS-DDOA model, an intelligent Unsupervised Deep Learning-based Stacked Auto-encoder (UDLS) optimized by Dynamic Differential… More >

  • Open Access

    ARTICLE

    K-Hyperparameter Tuning in High-Dimensional Space Clustering: Solving Smooth Elbow Challenges Using an Ensemble Based Technique of a Self-Adapting Autoencoder and Internal Validation Indexes

    Rufus Gikera1,*, Jonathan Mwaura2, Elizaphan Muuro3, Shadrack Mambo3

    Journal on Artificial Intelligence, Vol.5, pp. 75-112, 2023, DOI:10.32604/jai.2023.043229 - 26 October 2023

    Abstract k-means is a popular clustering algorithm because of its simplicity and scalability to handle large datasets. However, one of its setbacks is the challenge of identifying the correct k-hyperparameter value. Tuning this value correctly is critical for building effective k-means models. The use of the traditional elbow method to help identify this value has a long-standing literature. However, when using this method with certain datasets, smooth curves may appear, making it challenging to identify the k-value due to its unclear nature. On the other hand, various internal validation indexes, which are proposed as a solution to this… More >

  • Open Access

    ARTICLE

    Text Augmentation-Based Model for Emotion Recognition Using Transformers

    Fida Mohammad1,*, Mukhtaj Khan1, Safdar Nawaz Khan Marwat2, Naveed Jan3, Neelam Gohar4, Muhammad Bilal3, Amal Al-Rasheed5

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3523-3547, 2023, DOI:10.32604/cmc.2023.040202 - 08 October 2023

    Abstract Emotion Recognition in Conversations (ERC) is fundamental in creating emotionally intelligent machines. Graph-Based Network (GBN) models have gained popularity in detecting conversational contexts for ERC tasks. However, their limited ability to collect and acquire contextual information hinders their effectiveness. We propose a Text Augmentation-based computational model for recognizing emotions using transformers (TA-MERT) to address this. The proposed model uses the Multimodal Emotion Lines Dataset (MELD), which ensures a balanced representation for recognizing human emotions. The model used text augmentation techniques to produce more training data, improving the proposed model’s accuracy. Transformer encoders train the deep… More >

  • Open Access

    ARTICLE

    Traffic Scene Captioning with Multi-Stage Feature Enhancement

    Dehai Zhang*, Yu Ma, Qing Liu, Haoxing Wang, Anquan Ren, Jiashu Liang

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2901-2920, 2023, DOI:10.32604/cmc.2023.038264 - 08 October 2023

    Abstract Traffic scene captioning technology automatically generates one or more sentences to describe the content of traffic scenes by analyzing the content of the input traffic scene images, ensuring road safety while providing an important decision-making function for sustainable transportation. In order to provide a comprehensive and reasonable description of complex traffic scenes, a traffic scene semantic captioning model with multi-stage feature enhancement is proposed in this paper. In general, the model follows an encoder-decoder structure. First, multi-level granularity visual features are used for feature enhancement during the encoding process, which enables the model to learn… More >

  • Open Access

    ARTICLE

    Feature Enhanced Stacked Auto Encoder for Diseases Detection in Brain MRI

    Umair Muneer Butt1,2,*, Rimsha Arif2, Sukumar Letchmunan1,*, Babur Hayat Malik2, Muhammad Adil Butt2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2551-2570, 2023, DOI:10.32604/cmc.2023.039164 - 30 August 2023

    Abstract The detection of brain disease is an essential issue in medical and research areas. Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging (MRI) images. These techniques involve training neural networks on large datasets of MRI images, allowing the networks to learn patterns and features indicative of different brain diseases. However, several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques. This paper implements a Feature Enhanced Stacked Auto Encoder (FESAE) model to detect brain diseases. The standard… More >

  • Open Access

    ARTICLE

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

    Qiankun Zuo1,4, Junhua Hu2, Yudong Zhang3,*, Junren Pan4, Changhong Jing4, Xuhang Chen5, Xiaobo Meng6, Jin Hong7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2129-2147, 2023, DOI:10.32604/cmes.2023.028732 - 03 August 2023

    Abstract The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven… More > Graphic Abstract

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

  • Open Access

    REVIEW

    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130 - 26 June 2023

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting… More >

Displaying 31-40 on page 4 of 154. Per Page