Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (198)
  • Open Access

    ARTICLE

    Structure - Function Relationships in the Stem Cell's Mechanical World B: Emergent Anisotropy of the Cytoskeleton Correlates to Volume and Shape Changing Stress Exposure

    Hana Chang*, Melissa L. Knothe Tate∗,†,‡

    Molecular & Cellular Biomechanics, Vol.8, No.4, pp. 297-318, 2011, DOI:10.3970/mcb.2011.008.297

    Abstract In the preceding study (Part A), we showed that prescribed seeding conditions as well as seeding density can be used to subject multipotent stem cells (MSCs) to volume changing stresses and that changes in volume of the cell are associated with changes in shape, but not volume, of the cell nucleus. In the current study, we aim to control the mechanical milieu of live cells using these prescribed seeding conditions concomitant to delivery of shape changing stresses via fluid flow, while observing adaptation of the cytoskeleton, a major cellular transducer that modulates cell shape, stiffness and remodeling. We hypothesize that… More >

  • Open Access

    ARTICLE

    Structure - Function Relationships in the Stem Cell's Mechanical World A: Seeding Protocols as a Means to Control Shape and Fate of Live Stem Cells

    Joshua A. Zimmermann*, Melissa L. Knothe Tate∗,†,‡

    Molecular & Cellular Biomechanics, Vol.8, No.4, pp. 275-296, 2011, DOI:10.3970/mcb.2011.008.275

    Abstract Shape and fate are intrinsic manifestations of form and function at the cell scale. Here we hypothesize that seeding density and protocol affect the form and function of live embryonic murine mesenchymal stem cells (MSCs) and their nuclei. First, the imperative for study of live cells was demonstrated in studies showing changes in cell nucleus shape that were attributable to fixation per se. Hence, we compared live cell and nuclear volume and shape between groups of a model MSC line (C3H10T1/2) seeded at, or proliferated from 5,000 cells/cm2 to one of three target densities to achieve targeted development contexts. Cell… More >

  • Open Access

    ARTICLE

    In vitro Response of the Bone Marrow-Derived Mesenchymal Stem Cells Seeded in a Type-I Collagen-Glycosaminoglycan Scaffold for Skin Wound Repair Under the Mechanical Loading Condition

    Masanori Kobayashi, Myron Spector

    Molecular & Cellular Biomechanics, Vol.6, No.4, pp. 217-228, 2009, DOI:10.3970/mcb.2009.006.217

    Abstract In order to achieve successful wound repair by regenerative tissue engineering using mesenchymal stem cells (MSCs), it is important to understand the response of stem cells in the scaffold matrix to mechanical stress.
    To investigate the clinical effects of mechanical stress on the behavior of cells in scaffolds, bone marrow-derived mesenchymal stem cells (MSCs) were grown on a type-I collagen-glycosaminoglycan (GAG) scaffold matrix for one week under cyclic stretching loading conditions.
    The porous collagen-GAG scaffold matrix for skin wound repair was prepared, the harvested canine MSCs were seeded on the scaffold, and cultured under three kinds of cyclic… More >

  • Open Access

    ARTICLE

    Integration of Peridynamic Theory and OpenSees for Solving Problems in Civil Engineering

    Quan Gu1, Lei Wang1, Surong Huang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 471-489, 2019, DOI:10.32604/cmes.2019.05757

    Abstract Peridynamics (PD) is a powerful method to simulate the discontinuous problems in civil engineering. However, it may take a lot of effort to implement the material constitutive models into PD program for solving a broad range of problems. OpenSees is an open source software which includes a versatile material library and has been widely used by researchers and engineers in civil engineering. In this context, the paper presents a simple but effective approach to integrate PD with OpenSees by using a Client-Server (CS) software integration technique, such that the existing material constitutive models in OpenSees can be directly used by… More >

  • Open Access

    EDITORIAL

    Preface: Advances in OpenSees Applications to Civil Engineering

    Joel Conte1, Frank McKenna2, Quan Gu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 467-470, 2019, DOI:10.32604/cmes.2019.08174

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Equivalence of Ratio and Residual Approaches in the Homotopy Analysis Method and Some Applications in Nonlinear Science and Engineering

    Mustafa Turkyilmazoglu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 63-81, 2019, DOI:10.32604/cmes.2019.06858

    Abstract A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications. It was shown in the latter through various comparative physical models that the ratio approach of identifying the range of the convergence control parameter and also an optimal value for it in the homotopy analysis method is a promising alternative to the classically used h-level curves or to the minimizing the residual (squared) error. A mathematical analysis is targeted here to prove the equivalence of both the ratio approach and the traditional residual approach, especially… More >

  • Open Access

    ARTICLE

    Quantifying Roll Feel of a Car by Using a Musculoskeletal Mathematical Model

    Masaki Izawa1, Ryota Araki1, Tatsuro Suzuki1, Kaito Watanabe2, Kazuhito Misaji3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 493-507, 2019, DOI:10.31614/cmes.2019.04470

    Abstract Primary purpose of this research is to create a three-dimensional musculoskeletal mathematical model of a driver of a car using a motion capture system. The model is then used in an analysis of drive torque around joints and attached muscles as a vehicle travels in different travel modes and damping force settings to examine ‘burdens’ for the driver. Previous studies proposed a method of quantifying the degree of musculoskeletal load in simple human motion from the changes in drive torque around joints and attached muscles. However, examination of the level of burdens for the driver while driving using this method… More >

  • Open Access

    ARTICLE

    An Error Estimator for the Finite Element Approximation of Plane and Cylindrical AcousticWaves

    J. E. Sebold1, L. A. Lacerda2, J. A. M. Carrer3

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.2, pp. 127-145, 2015, DOI:10.3970/cmes.2015.106.127

    Abstract This paper deals with a Finite Element Method (FEM) for the approximation of the Helmholtz equation for two dimensional problems. The acoustic boundary conditions are weakly posed and an auxiliary problem with homogeneous boundary conditions is defined. This auxiliary approach allows for the formulation of a general solution method. Second order finite elements are used along with a discretization parameter based on the fixed wave vector and the imposed error tolerance. An explicit formula is defined for the mesh size control parameter based on Padé approximant. A parametric analysis is conducted to validate the rectangular finite element approach and the… More >

  • Open Access

    ARTICLE

    Computational Methods in Engineering: A Variety of Primal & Mixed Methods, with Global & Local Interpolations, for Well-Posed or Ill-Posed BCs

    L. Dong1, A. Alotaibi2, S.A. Mohiuddine2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.1, pp. 1-85, 2014, DOI:10.3970/cmes.2014.099.001

    Abstract In this expository article, a variety of computational methods, such as Collocation, Finite Volume, Finite Element, Boundary Element, MLPG (Meshless Local Petrov Galerkin), Trefftz methods, and Method of Fundamental Solutions, etc., which are often used in isolated ways in contemporary literature are presented in a unified way, and are illustrated to solve a 4th order ordinary differential equation (beam on an elastic foundation). Both the primal formulation, which considers the 4th order ODE with displacement as the primitive variable, as well as two types of mixed formulations (one resulting in a set of 2 second-order ODEs, and the other resulting… More >

  • Open Access

    ARTICLE

    Construction of an Edge Finite Element Space and a Contribution to the Mesh Selection in the Approximation of the Second Order Time Harmonic Maxwell System

    J. E. Sebold1, L. A. Lacerda2, J. A. M. Carrer3

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.2, pp. 111-137, 2014, DOI:10.3970/cmes.2014.103.111

    Abstract This work is concerned with the development of the so-called Whitney and Nédélec edge finite element method for the solution of the time-harmonic Maxwell equations. Initially, the second order time harmonic Maxwell systems, as well as their variational formulation, are presented. In the sequence, Whitney and Nédélec element spaces, whose functions present continuous tangential components along the interface are built of adjacent elements. Then, numerical experiments validate the performance of Whitney and Nédélec first order elements in a two-dimensional domain. The discrete dispersion relation for the elements shows that the numerical phase velocity can be used as an error estimator.… More >

Displaying 171-180 on page 18 of 198. Per Page