Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (86)
  • Open Access

    ARTICLE

    Synthesis and Physico-chemical Studies on Chalcone Based Epoxy Resin of (2E, 6E)-Bis (4-hydroxybenzylidene) cyclohexanone

    DHARMESH B. SANKHAVARA, JALPA CHOPDA, JIGNESH P. PATEL, P. H. PARSANIA*

    Journal of Polymer Materials, Vol.36, No.1, pp. 13-21, 2019, DOI:10.32381/JPM.2019.36.01.2

    Abstract Chalcone based epoxy resin (EBHBC) of (2E, 6E)- bis(4-hydroxybenzylidene) cyclohexanone (BHBC) was synthesized by condensing 0.5 mol BHBC and 2.5 mol epichlorohydrin in 500 mL isopropanol as a solvent and 1.0 mol NaOH in 50 mL water as a catalyst at 80o C. The structure of EBHBC is supported by spectral techniques. Molecular weights and molecular weight distribution of EBHBC were determined by gel permeation chromatography. DSC thermogram of EBHC showed one endothermic transition (146.1°C) and two endothermic transitions (253.52°C and 397.34°C) due to melting, some physical change and decomposition transitions, respectively. EBHBC is thermally More >

  • Open Access

    ARTICLE

    STUDY OF THERMAL AND MECHANICAL PROPERTIES OF FIBERGLASS MULTI-WALL CARBON NANOTUBE/EPOXY

    Luay Hashem Abbuda,b,*, Hyder H. Ballac, Ammar F. Abdulwahidd , Zaid Sttar Karimd

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.30

    Abstract This project aims at determining both numerical and experimental to some thermal properties and its thermal expansion coefficient, thermal conductivity and mechanical properties of reinforcement of fiber glass woven with matrix of multi wall carbon nanotube MWCNT / epoxy composite. First, this powder is known to have a very good thermal properties. So, the nanopartical combined with resin has poor thermal properties. Secondly, the development a complete solution for the manufacturing of multi wall carbon nanotube /epoxy composites different volume fraction from 1% to 10% with increment of 2% to compare the result of finite More >

  • Open Access

    ARTICLE

    Bio-Based Hyperbranched Toughener From Tannic Acid and Its Enhanced Solvent-Free Epoxy Resin with High Performance

    Jie Xu1,3, Jiayao Yang1, Peng Lin2, Xiaohuan Liu1,*, Jinjie Zhang1, Shenyuan Fu1,*, Yuxun Tang2,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1333-1346, 2019, DOI:10.32604/jrm.2019.07905

    Abstract It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin; however, this has remained a huge challenge. Herein, an eco-friendly, low-cost, and facile-fabricated bio-based hyperbranched toughener, carboxylic acid-functionalized tannic acid (CATA), was successfully prepared and applicated to the preparation of solvent-free epoxy resins. The mechanical performance, morphology, structural characterization, and thermal characterization of toughened epoxy resin system were studied. The toughened epoxy resin system with only 1.0wt% CATA reached the highest impact strength, 111% higher than the neat epoxy resin system. Notably, the tensile strength and elongation at break of toughened More >

  • Open Access

    ARTICLE

    Value-Added Utilization of Agro-Waste Derived Oil Palm Ash in Epoxy Composites

    Samsul Rizal1, Fizree, H. M.2, Chaturbhuj K. Saurabh3, Deepu A. Gopakumar2, N. A. Sri Aprilia4, D. Hermawan5, A. Banerjee6, Fazita M. R. M2, Haafiz M. K. M.2, Abdul Khalil H. P. S.2,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1269-1278, 2019, DOI:10.32604/jrm.2019.07227

    Abstract Oil palm ash (OPA) is an agro-industry waste and it has disposable problems. In the present study, an effort was made for value addition to OPA by incorporating it as a micro-filler in different concentration (0, 10, 20, 30, 40, and 50%) and sizes (100, 200, and 300 mesh size particles) in the epoxy matrix. Prepared micro OPA was having a crystallinity index of 65.4%, high inorganic elements, and smooth surface morphology. Fabricated composites had higher void content as compared to neat epoxy matrix. Mechanical properties of fabricated composites had a maximum value at 30%… More >

  • Open Access

    ARTICLE

    Numerical Modelling of the Transient Hygroscopic Behavior of Flax-Epoxy Composite

    Wajdi Zouari1,*, Mustapha Assarar1, Abderrazak Chilali2, Rezak Ayad1, Hocine Kebir3

    Journal of Renewable Materials, Vol.7, No.9, pp. 839-853, 2019, DOI:10.32604/jrm.2019.06773

    Abstract This contribution deals with the development of a three-node triangular plane finite element to analyze the transient hygroscopic behavior of 2/2 twill flax fabric-reinforced epoxy composite. Several plates of this material were fabricated using the vacuum infusion process and composite specimens were then cut and aged in tap water at room temperature until saturation. To simplify, a plane modelling of water diffusion in the aged specimens is adopted and Fick’s model is used to describe the water diffusion kinetics. To highlight the heterogeneity of the flax-epoxy samples, the twill flax fabrics waviness is modelled with More >

  • Open Access

    REVIEW

    Recent Development of Cardanol Based Polymer Materials-A Review

    Puyou Jia1, Fei Song1, Qiaoguang Li2,*, Haoyu Xia3, Mei Li1,*, Xugang Shu2, Yonghong Zhou1

    Journal of Renewable Materials, Vol.7, No.7, pp. 601-619, 2019, DOI:10.32604/jrm.2019.07011

    Abstract Polymers from renewable resources are receiving tremendous attention due to the increasing concerns on the depletion of fossil oils and deteriorated environments. Cardanol, as an abundant and renewable chemical raw material, has been widely used for the production of renewable polymer materials via converting into various of chemical monomers with active functional groups. This comprehensive review deals with various aspects of cardanol as a starting material the preparing various polymer and polymer composites such as benzoxazine resins, phenolic resin, polyurethanes, epoxy resin, vinyl ester polymers, polyamide and cyanate ester resins. The assessment of the future More >

  • Open Access

    ARTICLE

    Study on the Effect of Surface Modification on the Mechanical and Thermal Behaviour of Flax, Sisal and Glass Fiber-Reinforced Epoxy Hybrid Composites

    C. M. Meenakshi, A. Krishnamoorthy*

    Journal of Renewable Materials, Vol.7, No.2, pp. 153-169, 2019, DOI:10.32604/jrm.2019.00046

    Abstract Natural fiber-reinforced hybrid composites can be a better replacement for plastic composites since these plastic composites pose a serious threat to the environment. The aim of this study is to analyze the effect of surface modification of the natural fibers on the mechanical, thermal, hygrothermal, and water absorption behaviors of flax, sisal, and glass fiber-reinforced epoxy hybrid composites. The mechanical properties of alkaline treated sisal and flax fibers were found to increase considerably.Tensile, flexural and impact strength of glass/flax-fiber-reinforced hybrid samples improved by 58%, 36%, and 51%, respectively, after surface alkaline treatment. In addition, the More >

  • Open Access

    ARTICLE

    Semi-Interpenetrating Novolac-Epoxy Thermoset Polymer Networks Derived from Plant Biomass

    Mehul Barde1,2, Yusuf Celikbag3, Brian Via3, Sushil Adhikari4, Maria L. Auad1,2,*

    Journal of Renewable Materials, Vol.6, No.7, pp. 724-736, 2018, DOI:10.32604/JRM.2018.00116

    Abstract Bio-based phenol-formaldehyde polymer (BioNovolac) was developed by reacting molar excess of bio-oil/phenol with formaldehyde in acidic medium. Glycidyl 3,5-diglycidoxybenzoate (GDGB), was prepared by direct glycidylation of α-resorcylic acid (RA), a naturally occurring phenolic monomer. GDGB was crosslinked in the presence of BioNovolac by anionic polymerization. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of semi-interpenetrating polymer networks. The glass transition temperature and moduli of bio-based crosslinked systems were observed to increase with increasing GDGB content. Active chain density and mass retention measured by dynamic mechanical analysis (DMA) and Soxhlet extraction, respectively, indicated a high crosslink More >

  • Open Access

    ARTICLE

    Anisotropic Visco-Elastoplastic Modeling of Quasi-Unidirectional Flax Fiber Reinforced Epoxy Behavior: An Investigation on Low-Velocity Impact Response

    Marwa Abida1,2, Jamel Mars3,*, Florian Gehring1, Alexandre Vivet1, Fakhreddine Dammak3

    Journal of Renewable Materials, Vol.6, No.5, pp. 464-476, 2018, DOI:10.32604/JRM.2018.01897

    Abstract Based on experimental test results, flax fiber reinforced polymer composites are characterized by nonlinear visco-elastoplastic behavior. The aim of this work is to model the quasi-unidirectional flax fiber reinforced composite behavior through a three dimensional formulation with orthotropic elasticity and orthotropic plasticity using Hill criterion. The isotropic hardening and Johnson Cook parameters are identified from unidirectional tensile tests at different strain rates. The adjustment of Hill’s yield criterion is developed based on yield stresses obtained in tensile tests at different directions. The numerical integration of the constitutive equations is implemented in a user-defined material, UMAT More >

  • Open Access

    ARTICLE

    Preliminary Study on Tensile and Impact Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Composites

    Ahmad Safwan1, Mohammad Jawaid1*, Mohamed T. H. Sultan1,2, Azman Hassan3

    Journal of Renewable Materials, Vol.6, No.5, pp. 529-535, 2018, DOI:10.7569/JRM.2018.634103

    Abstract The application of natural fibers as reinforcement in composite material has increased due to environmental concerns, low cost, degradability and health concerns. The purpose of this study is to identify the best type of bamboo fibers to be used as reinforcement for kenaf (K)/bamboo hybrid composite. There were three types of bamboo fibers evaluated in this study which include bamboo mat (B), bamboo fabric (BF) and bamboo powder (BP). Chemical composition of B, BF, BP and K fibers were analyzed in this study. The effect of different types of bamboo fibers on tensile, impact, and More >

Displaying 61-70 on page 7 of 86. Per Page