Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (382)
  • Open Access

    ARTICLE

    Numerical Evaluation of Variation in ‘Characteristic Distance’ due to Fracture Specimen Thickness and Temperature

    Sanjeev Saxena1, Raghvendra Singh2, Geeta Agnihotri2

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 257-270, 2013, DOI:10.3970/cmc.2013.036.257

    Abstract The present numerical study is an attempt to understand the dependency of characteristic distance on the fracture specimen thickness and temperature. The presented work will be useful to establish the characteristic distance prediction methodology using three dimensional FEM model. Based on the methods proposed for the numerical prediction of characteristic distance, it comes out that it depends on fracture specimen thickness and finally it converges after a specified thickness of fracture specimen. In Armco iron material, characteristic distance varies in temperature ranges where dynamic strain ageing phenomenon is observed, initially decrease and then increases again. More >

  • Open Access

    ARTICLE

    Evaluation of the Toupin-Mindlin Theory for Predicting the Size Effects in the Buckling of the Carbon Nanotubes

    Veturia Chiroiu1, Ligia Munteanu1, Pier Paolo Delsanto2

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 75-100, 2010, DOI:10.3970/cmc.2010.016.075

    Abstract Conventional continuum theories are unable to capture the observed indentation size effects, due to the lack of intrinsic length scales that represent the measures of nanostructure in the constitutive relations. In order to overcome this deficiency, the Toupin-Mindlin strain gradient theory of nanoindentation is formulated in this paper and the size dependence of the hardness with respect to the depth and the radius of the indenter for multiple walled carbon nanotubes is investigated. Results show a peculiar size influence on the hardness, which is explained via the shear resistance between the neighboring walls during the buckling of the multiwalled nanotubes. More >

Displaying 381-390 on page 39 of 382. Per Page