Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (359)
  • Open Access

    ARTICLE

    Investigating the Cognitive Control of Social Media-Anxious Users Using a Psychological Experimental Approach

    Baoqiang Zhang1,2, Ling Xiang3,4,*

    International Journal of Mental Health Promotion, Vol.25, No.7, pp. 863-871, 2023, DOI:10.32604/ijmhp.2023.027303

    Abstract Social media has become increasingly popular and is now a significant tool for daily communication for many people. The use of social media can cause anxiety and have detrimental impacts on mental health. Cognitive impairment is more likely to affect individuals with anxiety. Investigating the cognitive abilities and mental health of social media users requires the development of new methodologies. This study employed the AX-Continuous Performance Test (AX-CPT) paradigm and the Stroop paradigm to study the cognitive control characteristics of trait anxiety, drawing on psychological experimental methods. Previous studies on whether trait anxiety impairs cognitive control remain controversial, possibly because… More >

  • Open Access

    ARTICLE

    Genetic algorithm-optimized backpropagation neural network establishes a diagnostic prediction model for diabetic nephropathy: Combined machine learning and experimental validation in mice

    WEI LIANG1,2,*, ZONGWEI ZHANG1,2, KEJU YANG1,2,3, HONGTU HU1,2, QIANG LUO1,2, ANKANG YANG1,2, LI CHANG4, YUANYUAN ZENG4

    BIOCELL, Vol.47, No.6, pp. 1253-1263, 2023, DOI:10.32604/biocell.2023.027373

    Abstract Background: Diabetic nephropathy (DN) is the most common complication of type 2 diabetes mellitus and the main cause of end-stage renal disease worldwide. Diagnostic biomarkers may allow early diagnosis and treatment of DN to reduce the prevalence and delay the development of DN. Kidney biopsy is the gold standard for diagnosing DN; however, its invasive character is its primary limitation. The machine learning approach provides a non-invasive and specific criterion for diagnosing DN, although traditional machine learning algorithms need to be improved to enhance diagnostic performance. Methods: We applied high-throughput RNA sequencing to obtain the genes related to DN tubular… More >

  • Open Access

    ARTICLE

    Experimental Study of Thermal-Hydraulic-Mechanical Coupling Behavior of High-Performance Concrete

    Wei Chen1,*, Wenhao Zhao1, Yue Liang1, Frederic Skoczylas2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2417-2430, 2023, DOI:10.32604/fdmp.2023.030028

    Abstract The design of an underground nuclear waste disposal requires a full characterization of concrete under various thermo-hydro-mechanical-chemical conditions. This experimental work studied the characterization of coupled thermo-hydro-mechanical effects using concretes made with cement CEM I or CEM V/A (according to European norms). Uniaxial and triaxial compression under 5 MPa confining pressure tests were performed under three different temperatures (T = 20°C, 50°C, and 80°C). The two concretes were dried under relative humidity (RH) to obtain a partially saturated state of approximately 70%. The results showed that the effects of water saturation and confining pressure are more important than that of… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF CONVECTIVE HEAT TRANSFER OF ALUMINA OXIDE NANOFLUIDS IN TRIANGLE CHANNEL WITH UNIFORM HEAT FLUX

    Kaprawi Sahim*, Dewi Puspitasari, Nukman

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-6, 2021, DOI:10.5098/hmt.16.22

    Abstract The recent trend application of the nanofluids is used in some industrial equipment such as tube heat exchanger, double pipe exchanger and shell-tube type heat exchanger. The Triangle tubes may be used in the heat exchanger. Thus, this experimental study reports the convective heat transfer performance of the aluminum oxide-water nanofluids flowing in the triangle channel. In this study, the amount of the volume fraction of the Al2O3 used was 0.1 %, 0.2 %, and 0.3 respectively in base-water as the nanofluids and the Reynolds numbers were varied from about 1000 to 7000. The channel was heated by the electric… More >

  • Open Access

    ARTICLE

    AN EXPERIMENTAL STUDY ON A NEW HIGH-EFFICIENT SUPERCHARGER FOR SEAWATER REVERSE OSMOSIS DESALINATION DRIVEN DIRECTLY BY TIDAL ENERGY

    Changming Linga,b,*,†, Xiaobo Louc, Yin Zhongb

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-6, 2021, DOI:10.5098/hmt.16.16

    Abstract To solve the issues of high-energetic consumption, high-cost and high-carbon emissions in the processes of reverse osmosis seawater desalination technology, this study proposed and implemented a tidal energy-gathering supercharger with the concept of using green tidal energy to directly produce high-pressure-seawater-driven reverse osmosis seawater desalination system. Compared with the traditional way of using tidal energy to produce electric power in order to produce high-pressure water for the system, this technology could save energy that may lost in two transferring process thus can improve the energy efficiency of the whole system, lower its running cost, and realize the green production concept… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL INVESTIGATION ON DRAG REDUCTION OF MIXED PEO AND CTAC/NASAL AQUEOUS SOLUTION IN A ROTATING DISK APPARATUS

    Wei Tiana , Mingjun Panga,*, Na Xub,†

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-12, 2021, DOI:10.5098/hmt.16.13

    Abstract Drag reduction (DR) by the additive of mixed surfactant and polymer is investigated in detail in a rotating disk apparatus (RDA). Polyethylene oxide (PEO) and Cetyltrimethyl ammonium chloride (CTAC)/sodium salicylate (NaSal) are chosen as polymer and surfactant, respectively. It is investigated on the influence of combination concentration of polymer & surfactant, temperature and Reynolds number on the drag-reducing rate. The present experimental results show that the drag-reducing rate of the mixed solution is definitely higher than that of the pure PEO or CTAC/NaSal solutions. This phenomenon is especially sharp at the high temperature and/or the large Reynolds number. When the… More >

  • Open Access

    ARTICLE

    A NUMERICAL AND EXPERIMENTAL STUDY OF THE EFFECT OF USING PERSONAL VENTILATION SYSTEMS ON INDOOR AIR QUALITY IN OFFICE ROOMS

    Hussien Aziz Saheb,*, Ala'a Abbas Mahdi, Qusay Rasheed Al-amir

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-15, 2021, DOI:10.5098/hmt.16.9

    Abstract In this study, indoor air quality and thermal comfort were investigated for two persons sitting inside an office room of dimensions (3×2.5×2.5m). The office room is equipped with personal ventilation systems positioned 50 cm from the person's face. These systems are characterized by the ability to change the rates of airflow (ATD). Experimental studies and results were conducted on a thermal manikin that simulates the human body in a sitting position, and the results are compared with CFD analysis using the k-epsilon and the RNG turbulent models. The experimental study focused on measuring the speed and temperature of the air… More >

  • Open Access

    ARTICLE

    AN EXPERIMENTAL ANALYSIS OF LIQUID AIR JET PUMP

    V. W. Bhatkara,*, Anirban Surb,*

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-5, 2021, DOI:10.5098/hmt.17.12

    Abstract A jet pump or an ejector uses primary fluid flow as motive fluid to entrained secondary fluid. In this paper, the main intention is to find suction flow rate, primary flow rate, secondary flow rate, loss factors and ejector efficiency for an applied pressure. The values of the different loss factors estimated are primary nozzle loss factor (Kp)=0.06, suction loss factor (Ks)=0.04-0.1, mixing loss factor (Km)=0.07-0.1 and diffuser loss factor (Kd)=0.0289. It is found that with the increase in pressure across the ejector, efficiency increases with increase in flow ratio and decrease in pressure ratio. More >

  • Open Access

    ARTICLE

    Experimental Study of Microalgae Cultivation under Selective Illumination by Ag/CoSO4 for Bioelectrode Materials Preparation

    Kai Zhu1, Hao Chen1,*, Shuang Wang1,*, Chuan Yuan1,2, Bin Cao3, Jun Ni1, Lujiang Xu4, Anqing Zheng5, Arman Amani Babadi1

    Journal of Renewable Materials, Vol.11, No.6, pp. 2849-2864, 2023, DOI:10.32604/jrm.2023.026317

    Abstract Microalgae biomass is an ideal precursor to prepare renewable carbon materials, which has broad application. The bioaccumulation efficiency (lipids, proteins, carbohydrates) and biomass productivity of microalgae are influenced by spectroscopy during the culture process. In this study, a bilayer plate-type photobioreactor was designed to cultivate Chlorella protothecoides with spectral selectivity by nanofluids. Compared to culture without spectral selectivity, the spectral selectivity of Ag/CoSO4 nanofluids increased microalgae biomass by 5.76%, and the spectral selectivity of CoSO4 solution increased by 17.14%. In addition, the spectral selectivity of Ag/CoSO4 nanofluids was more conducive to the accumulation of nutrients (29.46% lipids, 50.66% proteins, and… More > Graphic Abstract

    Experimental Study of Microalgae Cultivation under Selective Illumination by Ag/CoSO<sub>4</sub> for Bioelectrode Materials Preparation

  • Open Access

    ARTICLE

    EXPERIMENTAL INVESTIGATION OF A HUMIDIFICATIONDEHUMIDIFICATION DESALINATION UNIT WORKING UNDER BAGHDAD CONDITIONS

    Zahra F. Hussaina,*, Ahmed J. Hamedb, Abdul Hadi N. Khalifab, Mohanad F. Hassanb, Fawaz A.Najimc,†

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-11, 2022, DOI:10.5098/hmt.18.14

    Abstract At places far from the energy grid lines, freshwater is sometimes needed. Consequently, even countries with rich energy resources, such as the Arabian Gulf countries, have shown strong interest in desalination processes that often use renewable energy sources. In the present work, a desalination unit depending on the humidification-dehumidification principles is fabricated and tested under Baghdad, Iraq conditions. The HDH system under study consists of 6 parabolic trough solar collectors (PTSC) of a total aperture area of 8.772 m2 , the humidifier, and the dehumidifier and a tracking system. The effects of salty water flow rate and the HDH air-water… More >

Displaying 61-70 on page 7 of 359. Per Page