Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (149)
  • Open Access

    ARTICLE

    Enhancing Classroom Behavior Recognition with Lightweight Multi-Scale Feature Fusion

    Chuanchuan Wang1,2, Ahmad Sufril Azlan Mohamed2,*, Xiao Yang 2, Hao Zhang 2, Xiang Li1, Mohd Halim Bin Mohd Noor 2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 855-874, 2025, DOI:10.32604/cmc.2025.066343 - 29 August 2025

    Abstract Classroom behavior recognition is a hot research topic, which plays a vital role in assessing and improving the quality of classroom teaching. However, existing classroom behavior recognition methods have challenges for high recognition accuracy with datasets with problems such as scenes with blurred pictures, and inconsistent objects. To address this challenge, we proposed an effective, lightweight object detector method called the RFNet model (YOLO-FR). The YOLO-FR is a lightweight and effective model. Specifically, for efficient multi-scale feature extraction, effective feature pyramid shared convolutional (FPSC) was designed to improve the feature extract performance by leveraging convolutional… More >

  • Open Access

    ARTICLE

    Hybrid HRNet-Swin Transformer: Multi-Scale Feature Fusion for Aerial Segmentation and Classification

    Asaad Algarni1, Aysha Naseer 2, Mohammed Alshehri3, Yahya AlQahtani4, Abdulmonem Alshahrani4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1981-1998, 2025, DOI:10.32604/cmc.2025.064268 - 29 August 2025

    Abstract Remote sensing plays a pivotal role in environmental monitoring, disaster relief, and urban planning, where accurate scene classification of aerial images is essential. However, conventional convolutional neural networks (CNNs) struggle with long-range dependencies and preserving high-resolution features, limiting their effectiveness in complex aerial image analysis. To address these challenges, we propose a Hybrid HRNet-Swin Transformer model that synergizes the strengths of HRNet-W48 for high-resolution segmentation and the Swin Transformer for global feature extraction. This hybrid architecture ensures robust multi-scale feature fusion, capturing fine-grained details and broader contextual relationships in aerial imagery. Our methodology begins with… More >

  • Open Access

    ARTICLE

    Fusing Geometric and Temporal Deep Features for High-Precision Arabic Sign Language Recognition

    Yazeed Alkhrijah1,2, Shehzad Khalid3, Syed Muhammad Usman4,*, Amina Jameel3, Danish Hamid5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1113-1141, 2025, DOI:10.32604/cmes.2025.068726 - 31 July 2025

    Abstract Arabic Sign Language (ArSL) recognition plays a vital role in enhancing the communication for the Deaf and Hard of Hearing (DHH) community. Researchers have proposed multiple methods for automated recognition of ArSL; however, these methods face multiple challenges that include high gesture variability, occlusions, limited signer diversity, and the scarcity of large annotated datasets. Existing methods, often relying solely on either skeletal data or video-based features, struggle with generalization and robustness, especially in dynamic and real-world conditions. This paper proposes a novel multimodal ensemble classification framework that integrates geometric features derived from 3D skeletal joint… More >

  • Open Access

    ARTICLE

    MGD-YOLO: An Enhanced Road Defect Detection Algorithm Based on Multi-Scale Attention Feature Fusion

    Zhengji Li1, Fazhan Xiong1, Boyun Huang1, Meihui Li1, Xi Xiao2, Yingrui Ji3,4, Jiacheng Xie1,2, Aokun Liang5, Hao Xu6,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5613-5635, 2025, DOI:10.32604/cmc.2025.066188 - 30 July 2025

    Abstract Accurate and real-time road defect detection is essential for ensuring traffic safety and infrastructure maintenance. However, existing vision-based methods often struggle with small, sparse, and low-resolution defects under complex road conditions. To address these limitations, we propose Multi-Scale Guided Detection YOLO (MGD-YOLO), a novel lightweight and high-performance object detector built upon You Only Look Once Version 5 (YOLOv5). The proposed model integrates three key components: (1) a Multi-Scale Dilated Attention (MSDA) module to enhance semantic feature extraction across varying receptive fields; (2) Depthwise Separable Convolution (DSC) to reduce computational cost and improve model generalization; and More >

  • Open Access

    ARTICLE

    An Ochotona Curzoniae Object Detection Model Based on Feature Fusion with SCConv Attention Mechanism

    Haiyan Chen*, Rong Li

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5693-5712, 2025, DOI:10.32604/cmc.2025.065339 - 30 July 2025

    Abstract The detection of Ochotona Curzoniae serves as a fundamental component for estimating the population size of this species and for analyzing the dynamics of its population fluctuations. In natural environments, the pixels representing Ochotona Curzoniae constitute a small fraction of the total pixels, and their distinguishing features are often subtle, complicating the target detection process. To effectively extract the characteristics of these small targets, a feature fusion approach that utilizes up-sampling and channel integration from various layers within a CNN can significantly enhance the representation of target features, ultimately improving detection accuracy. However, the top-down… More >

  • Open Access

    ARTICLE

    Attention Shift-Invariant Cross-Evolutionary Feature Fusion Network for Infrared Small Target Detection

    Siqi Zhang, Shengda Pan*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4655-4676, 2025, DOI:10.32604/cmc.2025.064864 - 30 July 2025

    Abstract Infrared images typically exhibit diverse backgrounds, each potentially containing noise and target-like interference elements. In complex backgrounds, infrared small targets are prone to be submerged by background noise due to their low pixel proportion and limited available features, leading to detection failure. To address this problem, this paper proposes an Attention Shift-Invariant Cross-Evolutionary Feature Fusion Network (ASCFNet) tailored for the detection of infrared weak and small targets. The network architecture first designs a Multidimensional Lightweight Pixel-level Attention Module (MLPA), which alleviates the issue of small-target feature suppression during deep network propagation by combining channel reshaping,… More >

  • Open Access

    ARTICLE

    Multi-Scale Fusion Network Using Time-Division Fourier Transform for Rolling Bearing Fault Diagnosis

    Ronghua Wang1, Shibao Sun1,*, Pengcheng Zhao1,*, Xianglan Yang2, Xingjia Wei1, Changyang Hu1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3519-3539, 2025, DOI:10.32604/cmc.2025.066212 - 03 July 2025

    Abstract The capacity to diagnose faults in rolling bearings is of significant practical importance to ensure the normal operation of the equipment. Frequency-domain features can effectively enhance the identification of fault modes. However, existing methods often suffer from insufficient frequency-domain representation in practical applications, which greatly affects diagnostic performance. Therefore, this paper proposes a rolling bearing fault diagnosis method based on a Multi-Scale Fusion Network (MSFN) using the Time-Division Fourier Transform (TDFT). The method constructs multi-scale channels to extract time-domain and frequency-domain features of the signal in parallel. A multi-level, multi-scale filter-based approach is designed to More >

  • Open Access

    ARTICLE

    SFC_DeepLabv3+: A Lightweight Grape Image Segmentation Method Based on Content-Guided Attention Fusion

    Yuchao Xia, Jing Qiu*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2531-2547, 2025, DOI:10.32604/cmc.2025.064635 - 03 July 2025

    Abstract In recent years, fungal diseases affecting grape crops have attracted significant attention. Currently, the assessment of black rot severity mainly depends on the ratio of lesion area to leaf surface area. However, effectively and accurately segmenting leaf lesions presents considerable challenges. Existing grape leaf lesion segmentation models have several limitations, such as a large number of parameters, long training durations, and limited precision in extracting small lesions and boundary details. To address these issues, we propose an enhanced DeepLabv3+ model incorporating Strip Pooling, Content-Guided Fusion, and Convolutional Block Attention Module (SFC_DeepLabv3+), an enhanced lesion segmentation method based… More >

  • Open Access

    ARTICLE

    Rolling Bearing Fault Detection Based on Self-Adaptive Wasserstein Dual Generative Adversarial Networks and Feature Fusion under Small Sample Conditions

    Qiang Ma1,2,3,4,5, Zhuopei Wei1,2, Kai Yang1,2,*, Long Tian1,2, Zepeng Li1,2

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 1011-1035, 2025, DOI:10.32604/sdhm.2025.060596 - 30 June 2025

    Abstract An intelligent diagnosis method based on self-adaptive Wasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extraction, which are commonly faced by rolling bearings and lead to low diagnostic accuracy. Initially, dual models of the Wasserstein deep convolutional generative adversarial network incorporating gradient penalty (1D-2DWDCGAN) are constructed to augment the original dataset. A self-adaptive loss threshold control training strategy is introduced, and establishing a self-adaptive balancing mechanism for stable model training. Subsequently, a diagnostic model based on multidimensional feature fusion is designed,… More >

  • Open Access

    ARTICLE

    YOLO-LE: A Lightweight and Efficient UAV Aerial Image Target Detection Model

    Zhe Chen*, Yinyang Zhang, Sihao Xing

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1787-1803, 2025, DOI:10.32604/cmc.2025.065238 - 09 June 2025

    Abstract Unmanned aerial vehicle (UAV) imagery poses significant challenges for object detection due to extreme scale variations, high-density small targets (68% in VisDrone dataset), and complex backgrounds. While YOLO-series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion, their rigid architectures struggle with multi-scale adaptability, as exemplified by YOLOv8n’s 36.4% mAP and 13.9% small-object AP on VisDrone2019. This paper presents YOLO-LE, a lightweight framework addressing these limitations through three novel designs: (1) We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-object features while reducing backbone parameters, thereby improving More >

Displaying 21-30 on page 3 of 149. Per Page