Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (78)
  • Open Access

    ARTICLE

    A Novel Approach for the Numerical Simulation of Fluid-Structure Interaction Problems in the Presence of Debris

    Miaomiao Ren*, Xiaobin Shu

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.5, pp. 979-991, 2020, DOI:10.32604/fdmp.2020.09563 - 09 October 2020

    Abstract A novel algorithm is proposed for the simulation of fluid-structure interaction problems. In particular, much attention is paid to natural phenomena such as debris flow. The fluid part (debris flow fluid) is simulated in the framework of the smoothed particle hydrodynamics (SPH) approach, while the solid part (downstream obstacles) is treated using the finite element method (FEM). Fluid-structure coupling is implemented through dynamic boundary conditions. In particular, the software “TensorFlow” and an algorithm based on Python are combined to conduct the required calculations. The simulation results show that the dynamics of viscous and non-viscous debris More >

  • Open Access

    ARTICLE

    Frequencies of Lock Gate Structure Coupled with Reservoir Fluid

    Priyaranjan Pal*

    Sound & Vibration, Vol.54, No.3, pp. 179-200, 2020, DOI:10.32604/sv.2020.010679 - 31 August 2020

    Abstract This study determines the natural frequencies of the lock gate structure, considering the coupled effect of reservoir fluid on one side using the finite element method (FEM). The gate is assumed to be a uniformly thick plate, and its material is isotropic, homogeneous, and elastic. The reservoir fluid is assumed to be inviscid and incompressible in an irrotational flow field. The length of the reservoir domain is truncated using the far boundary condition by adopting the Fourier series expansion theory. Two different assumptions on the free surface, i.e., undisturbed and linearized, are considered in the… More >

  • Open Access

    ARTICLE

    Modeling and Simulation of Valve Cycle in Vein Using an Immersed Finite Element Method

    Xiang Liu1, Liangbo Sun2, Mingzhen Wang3, 4, Bin Li2, Lisheng Liu1, 5, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 153-183, 2020, DOI:10.32604/cmes.2020.08716 - 01 April 2020

    Abstract A vein model was established to simulate the periodic characteristics of blood flow and valve deformation in blood-induced valve cycles. Using an immersed finite element method which was modified by a ghost fluid technique, the interaction between the vein and blood was simulated. With an independent solid solver, the contact force between vein tissues was calculated using an adhesive contact method. A benchmark simulation of the normal valve cycle validated the proposed model for a healthy vein. Both the opening orifice and blood flow rate agreed with those in the physiology. Low blood shear stress… More >

  • Open Access

    ARTICLE

    Finite Element Analysis on Vibration Characteristics of an Offshore Floating Breakwater

    Hongyi Yan1, Dingguo Zhang1, Liang Li1,*, Xiaoyu Luo2

    Structural Durability & Health Monitoring, Vol.14, No.1, pp. 19-36, 2020, DOI:10.32604/sdhm.2020.07457 - 01 March 2020

    Abstract The construction of seaside facilities is a hot topic in the field of ocean engineering. In this paper, a new type of floating breakwater is designed by 3DCAD geometric modeling. Based on the vibration theory and finite element technology, the floating breakwater model is optimized, and the modal analysis of the structure with the bracket as main body and blades as functional attachments is carried out. Natural frequencies and mode shapes of the blades are first calculated, and the effects of the natural frequencies in both dry and wet conditions are taken into account. Modal… More >

  • Open Access

    ABSTRACT

    Fully-Coupled Fluid-Structure Interaction (FSI) Simulations of Heart Valve-Left Ventricle Dynamics

    Wei Sun1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 64-64, 2019, DOI:10.32604/mcb.2019.08533

    Abstract Fluid–structure interaction (FSI) is a common phenomenon in biological systems. FSI problems of practical interest, such as fish/mammalian swimming, insect/bird flight, and human cardiac blood flow and respiration often involve multiple 3D immersed bodies with complex geometries undergoing very large structural displacements, and inducing very complex flow phenomena. Simulation of heart valve FSI is a technically challenging problem due to the large deformation of the valve leaflets through the cardiac fluid domain in the atrium and ventricular chambers.
    Recently, we developed a FSI computational framework [1] for modeling patient-specific left heart (LH) dynamics using smoothed… More >

  • Open Access

    ABSTRACT

    Path Selection of a Spherical Capsule in a Branched Channel

    Zhen Wang1, Yi Sui1, Wen Wang1, Dominique Barthѐs-Biesel2, Anne-Virginie Salsac2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 42-43, 2019, DOI:10.32604/mcb.2019.07148

    Abstract Capsules are liquid droplets enclosed by a thin membrane which can resist shear deformation. They are widely found in nature (e.g. red blood cells) and in numerous applications (e.g. food, cosmetic, biomedical and pharmaceutical industries [1]), where they often flow through a complicated network of tubes or channels: this is the case for RBCs in the human circulation or for artificial capsules flowing through microfluidic devices. Central to these flows is the dynamic motion of capsules at bifurcations, in particular the question of path selection. A good understanding of this problem is indeed needed to… More >

  • Open Access

    ABSTRACT

    The Influence of Enhanced External Counterpulsation Intervention on the Biomechanical Stress Distribution of Advanced Plaque: A 3D FSI Study Based on in vivo Animal Experiment

    Yahui Zhang1, Hui Wang1,2, Zhouming Mai1,2, Jianhang Du1,2,3,*, Guifu Wu1,2,3

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 85-86, 2019, DOI:10.32604/mcb.2019.05836

    Abstract Enhanced external counter pulsation (EECP) is an effective therapy to provide beneficial assistance for the failing heart by reducing cardiac afterload and increasing blood flow perfusion noninvasively. The technique of EECP involves the use of the EECP device to inflate and deflate a series of compression cuffs wrapped around the patient’s calves, lower thighs, and upper thighs. As the result, the enhanced flow perfusion is derived from the device’s propelling blood from veins of lower body to arteries of upper body and increases the blood supply for the important organs and brain. In the ACCF/AHA… More >

  • Open Access

    ABSTRACT

    Vascular Stress Analysis During in Vivo Intravascular Optical Coherence Tomography Imaging

    Junjie Jia1, Cuiru Sun1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 61-64, 2019, DOI:10.32604/mcb.2019.05736

    Abstract Intravascular optical coherence tomography (IVOCT) has been employed to clinical coronary imaging for several years. But the influence of flushing and OCT catheter to the blood vessel biomechanical properties have not been studied. In this paper, IVOCT imaging is integrated with the fluid-structure interaction (FSI) simulation to study the blood flow velocity and the stress distribution of a porcine carotid artery during IVOCT imaging. 3D geometric model is built based on the in vivo OCT images, and a hyperelastic model is employed for the material properties of the vascular wall. The blood flow profile and wall More >

  • Open Access

    ABSTRACT

    Echo-Based FSI Models to Simulate Ventricular Electrical Signal Conduction in Pig Pacemaker Models

    Longling Fan1, Jing Yao2, Chun Yang3, Di Xu2, Dalin Tang1,4,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 41-41, 2019, DOI:10.32604/mcb.2019.05720

    Abstract Cardiac pacing has been an effective treatment in the management of patients with arrhythmia. Different pacemaker location may have different impact on pacemaker effectiveness. A novel image-based ventricle animal modeling approach was proposed to integrate echocardiography images, propagating dynamic electric potential on ventricle surface to perform myocardial function assessment. The models will be used to simulate ventricular electrical signal conduction and optimize pacemaker location for better cardiac outcome. One health female adult pig weight 42.5 kg was used to make pacing animal model with different ventricle pacing locations. Pig health status was assessed before undergoing… More >

  • Open Access

    ARTICLE

    Partitioned Method of Insect Flapping Flight for Maneuvering Analysis

    Minato Onishi1, Daisuke Ishihara1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.1, pp. 145-175, 2019, DOI:10.32604/cmes.2019.06781

    Abstract This study proposed a partitioned method to analyze maneuvering of insects during flapping flight. This method decomposed the insect flapping flight into wing and body subsystems and then coupled them via boundary conditions imposed on the wing’s base using one-way coupling. In the wing subsystem, the strong coupling of the flexible wings and surrounding fluid was accurately analyzed using the finite element method to obtain the thrust forces acting on the insect’s body. The resulting thrust forces were passed from the wing subsystem to the body subsystem, and then rigid body motion was analyzed in… More >

Displaying 21-30 on page 3 of 78. Per Page