Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (80)
  • Open Access

    ARTICLE

    Simulation of Thermal Fluid-structure Interaction Phenomena in a Liquid Sodium Porous System

    Yan Shen1, Hong Zhang1,2,3, Hui Xu1, Tong Bai1, Ping Yu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.1, pp. 63-81, 2014, DOI:10.3970/fdmp.2014.010.063

    Abstract Single-unit and multi-unit models of porous media (metal felts) have been used to investigate thermal fluid-structure interaction phenomena in a liquid sodium system. Micro-scale aspects have been studied via numerical simulations. The permeability of metal felts has been measured experimentally to verify the reliability of the models used. This integrated approach has allowed a proper evaluation of the interdependencies among phenomena on different scales (including relevant information on skeleton deformation and pressure drop as a function of different parameters). Pressure drop generally increases with velocity and heat flux for both laminar and turbulent flows. The More >

  • Open Access

    ARTICLE

    Brittle Fracture and Hydroelastic Simulations based on Moving Particle Simulation

    R.A. Amaro Junior1, L.Y. Cheng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.2, pp. 87-118, 2013, DOI:10.3970/cmes.2013.095.087

    Abstract In this paper simulations of brittle fracture and hydroelastic problems are carried out by using a numerical approach based on the Moving Particle Simulation (MPS) method. It is a meshless method used to model both fluid and elastic solid, and all the computational domain is discretized in Lagrangian particles. A higher order accuracy gradient operator is used herein by adopting a correction matrix. Also, in order to correctly simulate the collision of the fragments, a contact detection algorithm that takes into account the presence of the solid surfaces generated by brittle fracture is proposed. In… More >

  • Open Access

    ARTICLE

    FEM/Wideband FMBEM Coupling for Fluid-Structure Interaction Problem and 2D Acoustic Design Sensitivity Analysis

    L.L. Chen1, H.B. Chen2, C.J. Zheng3

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.6, pp. 459-483, 2013, DOI:10.3970/cmes.2013.094.459

    Abstract A coupling algorithm based on the finite element method and the wideband fast multipole boundary element method (FEM/wideband FMBEM) is proposed for the simulation of fluid-structure interaction and structural-acoustic sensitivity analysis using the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. The FEM/Wideband FMBEM algorithm makes it possible to predict the effects of arbitrarily shaped More >

  • Open Access

    ARTICLE

    An alternating finite difference material point method for numerical simulation of high explosive explosion problems

    X. X. Cui1, X. Zhang1,2, K. Y. Sze3, X. Zhou4

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.5, pp. 507-538, 2013, DOI:10.3970/cmes.2013.092.507

    Abstract Based on the material point method (MPM), an alternating finite difference material point (AFDMP) method is proposed for modeling the 3D high explosive (HE) explosion and its interaction with structures nearby. The initiatory detonation and eventual fluid structure interaction (FSI) are simulated by the standard MPM. On the other hand, the finite difference method (FDM) is employed to simulate the dispersion of the detonation products into the surrounding air where the particles degenerate to marker points which track the moving interface between detonation products and air. The conversion between MPM and FDM is implemented by More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization of a Fluid Structure Interaction Benchmarking

    M. Razzaq1, C. Tsotskas2, S. Turek1, T. Kipouros2, M. Savill2, J. Hron3

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.4, pp. 303-337, 2013, DOI:10.3970/cmes.2013.090.303

    Abstract The integration and application of a new multi-objective tabu search optimization algorithm for Fluid Structure Interaction (FSI) problems are presented. The aim is to enhance the computational design process for real world applications and to achieve higher performance of the whole system for the four considered objectives. The described system combines the optimizer with a well established FSI solver which is based on the fully implicit, monolithic formuFlation of the problem in the Arbitrary Lagrangian-Eulerian FEM approach. The proposed solver resolves the proposed fluid-structure interaction benchmark which describes the self-induced elastic deformation of a beam More >

  • Open Access

    ARTICLE

    IVUS-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 77-94, 2012, DOI:10.3970/mcb.2012.009.077

    Abstract Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better plaque assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. A framework is proposed to combine intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling with fluid-structure interactions and anisotropic material properties to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. Impact of pre-shrink-stretch process, vessel curvature and high More >

  • Open Access

    ARTICLE

    Vibroacoustic Response of Flexible Car Components

    J. Herrmann1, M. Junge1, L. Gaul1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.6, pp. 487-504, 2012, DOI:10.3970/cmes.2012.086.487

    Abstract The influence of an acoustic field on the dynamic behavior of a flexible structure is a common issue in automotive applications. An example is the pressure-induced structure-borne sound of piping and exhaust systems. Efficient model order reduction and substructuring techniques accelerate the finite element analysis and enable the vibroacoustic optimization of such complex systems with acoustic fluid-structure interaction. This research reviews the application of the Craig-Bampton and the Rubin method to fluid-structure coupled systems and presents two automotive applications. First, a fluid-filled piping system is assembled by substructures or superelements according to the Craig-Bampton method.… More >

  • Open Access

    ARTICLE

    A Numerical Procedure Based on 1D-IRBFN and Local MLS-1D-IRBFN Methods for Fluid-Structure Interaction Analysis

    D. Ngo-Cong, N. Mai-Duy, W. Karunasena, T. Tran-Cong

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.5, pp. 459-498, 2012, DOI:10.3970/cmes.2012.083.459

    Abstract The partition of unity method is employed to incorporate the moving least square (MLS) and one dimensional-integrated radial basis function (1D-IRBFN) techniques in a new approach, namely local MLS-1D-IRBFN or LMLS-1D-IRBFN. This approach leads to sparse system matrices and offers a high level of accuracy as in the case of 1D-IRBFN method. A new numerical procedure based on the 1D-IRBFN method and LMLS-1D-IRBFN approach is presented for a solution of fluid-structure interaction (FSI) problems. A combination of Chorin's method and pseudo-time subiterative technique is presented for a transient solution of 2-D incompressible viscous Navier-Stokes equations More >

  • Open Access

    ABSTRACT

    Fluid-Structure Interaction Human Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models Based on Patient-Tracking In Vivo MRI Data

    Dalin Tang1, Chun Yang2, Satya Atluri3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.3, pp. 67-68, 2011, DOI:10.3970/icces.2011.018.067

    Abstract Cardiovascular disease is the leading cause of death worldwide. Many victims of the disease died suddenly without prior symptoms. It is a great challenge for clinicians and researchers to develop screening techniques and assessment methodologies to identify those patients for early treatment and prevention of the fatal clinical event. Considerable effort has been devoted investigating mechanisms governing atherosclerotic plaque progression and rupture [Friedman, Bargeron, Deters, Hutchins and Mark (1987); Friedman and Giddens (2005); Giddens, Zarins, Glagov, S. (1993); Ku, Giddens, Zarins and Glagov (1985); Gibson et al. (1993); Liu and Tang (2010); Stone et al.… More >

  • Open Access

    ABSTRACT

    Intravascular Ultrasound (IVUS)-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment

    Mingchao Cai, Chun Yang, Mehmet H. Kural, Richard Bach, David Muccigrosso, Deshan Yang, Jie Zheng, Kristen L. Billiar, Dalin Tang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 97-104, 2011, DOI:10.3970/icces.2011.019.097

    Abstract Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better risk assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. We propose a procedure where intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling are combined together to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. More >

Displaying 51-60 on page 6 of 80. Per Page