Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (83)
  • Open Access

    ARTICLE

    Friction Coefficient Calibration of Sunflower Seeds for Discrete Element Modeling Simulation

    Shuai Wang, Zhihong Yu*, Wenjie Zhang, Dongxu Zhao, Aorigele

    Phyton-International Journal of Experimental Botany, Vol.91, No.11, pp. 2559-2582, 2022, DOI:10.32604/phyton.2022.021354 - 12 July 2022

    Abstract

    Sunflower (Helianthus annuus L.) is one of the four major oil crops in the world and has high economic value. However, the lack of discrete element method (DEM) models and parameters for sunflower seeds hinders the application of DEM for computer simulation in the key working processes of sunflower seed sowing and harvesting. The present study was conducted on two varieties of sunflower, and the DEM model of sunflower seeds was established by using 3D scanning technology based on the distribution of triaxial dimensions and volumes of the geometric model of sunflower seeds. Similarly, the physical

    More >

  • Open Access

    ARTICLE

    Numerical Simulation of a Granular Flow on a Smooth Inclined Plane

    Rida Tazi1, Adil Echchelh1, Mohammed El Ganaoui2, Aouatif Saad3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1631-1638, 2022, DOI:10.32604/fdmp.2022.021975 - 27 June 2022

    Abstract Unlike most fluids, granular materials include coexisting solid, liquid or gaseous regions, which produce a rich variety of complex flows. Dense flows of grains driven by gravity down inclines occur in nature and in industrialprocesses. To describe the granular flow on an inclined surface, several studies were carried out. We can cite in particular the description of Saint-Venant which considers a dry granular flow, without cohesion and it only takes into account the substance-substrate friction, this model proposes a simplified form of the granular flow, which depends on the one side on the angle of… More >

  • Open Access

    ARTICLE

    Thermomechanical Behavior of Brake Drums Under Extreme Braking Conditions

    T. Khatir1,2, M. Bouchetara2, K. Derrar2, M. Djafri3, S. Khatir4, M. Abdel Wahab5,6,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2259-2273, 2022, DOI:10.32604/cmc.2022.020879 - 29 March 2022

    Abstract Braking efficiency is characterized by reduced braking time and distance, and therefore passenger safety depends on the design of the braking system. During the braking of a vehicle, the braking system must dissipate the kinetic energy by transforming it into heat energy. A too high temperature can lead to an almost total loss of braking efficiency. An excessive rise in brake temperature can also cause surface cracks extending to the outside edge of the drum friction surface. Heat transfer and temperature gradient, not to forget the vehicle's travel environment (high speed, heavy load, and steeply… More >

  • Open Access

    ARTICLE

    An Experimental and Numerical Study on the Ballistic Performance of Multi-Layered Moderately-Thick Metallic Targets against 12.7-mm Projectiles

    Kailei Wang, Mingjing Li*, Peng Yan, Leiting Dong*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 165-197, 2022, DOI:10.32604/cmes.2022.019188 - 24 January 2022

    Abstract The main goal of this work is to study the ballistic performance of multi-layered moderately-thick metallic targets. Several target configurations have been considered in this work, with various types of interlayer connection (spaced, contacted and adhesive) and the number of layers (four and eight), and the influence of target configurations on ballistic performance has been studied experimentally and numerically. In the experiments, the targets were impacted by 12.7-mm projectiles at a velocity around 820 m/s. The experimental results show that, with similar total thickness, the contacted and adhesive targets exhibit better ballistic performance than the monolithic… More >

  • Open Access

    ARTICLE

    Takagi–Sugeno Fuzzy Modeling and Control for Effective Robotic Manipulator Motion

    Izzat Al-Darraji1,2, Ayad A. Kakei2, Ayad Ghany Ismaeel3, Georgios Tsaramirsis4, Fazal Qudus Khan5, Princy Randhawa6, Muath Alrammal4, Sadeeq Jan7,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1011-1024, 2022, DOI:10.32604/cmc.2022.022451 - 03 November 2021

    Abstract Robotic manipulators are widely used in applications that require fast and precise motion. Such devices, however, are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors within the dynamics of their rigid part. To address these issues, the Linear Matrix Inequalities (LMIs) and Parallel Distributed Compensation (PDC) approaches are implemented in the Takagy–Sugeno Fuzzy Model (T-SFM). We propose the following methodology; initially, the state space equations of the nonlinear manipulator model are derived. Next, a Takagy–Sugeno Fuzzy Model (T-SFM) technique is used for linearizing the state space More >

  • Open Access

    ARTICLE

    An Experimental and Analytical Study on Cross-Laminated Bamboo Rocking Walls with Friction Dampers

    Qingfang Lv1, Tongchen Han1, Ye Liu2,*, Yi Ding1, Yujie Lu1

    Journal of Renewable Materials, Vol.9, No.10, pp. 1757-1779, 2021, DOI:10.32604/jrm.2021.015536 - 12 May 2021

    Abstract

    Cross-laminated bamboo (CLB) have a high strength to weight ratio and stable bidirectional mechanical properties. Inspired by the investigation on cross-laminated timber (CLT) rocking walls, CLB rocking walls with conventional friction dampers (CFDs) are studied in this paper. To investigate the mechanical properties of the CLB rocking wall, seven tests are conducted under a cyclic loading scheme, and different test parameters, including the existence of the CFDs, the moment ratio, and the loading times, are discussed. The test results show a bilinear behavior of the CLB rocking wall. The small residual displacements of the CLB rocking

    More > Graphic Abstract

    An Experimental and Analytical Study on Cross-Laminated Bamboo Rocking Walls with Friction Dampers

  • Open Access

    ARTICLE

    Novel Analytical Thermal Performance Rate Analysis in ZnO-SAE50 Nanolubricant: Nonlinear Mathematical Model

    Adnan1, Umar Khan2, Naveed Ahmed3, Syed Tauseef Mohyud-Din4, Ilyas Khan5,*, El-Sayed M. Sherif6,7

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 477-489, 2021, DOI:10.32604/cmc.2021.012739 - 12 January 2021

    Abstract The investigation of local thermal transport rate in the nanolubricants is significant. These lubricants are broadly used in environmental pollution, mechanical engineering and in the paint industry due to high thermal performance rate. Therefore, thermal transport in ZnO-SAE50 nanolubricant under the impacts of heat generation/absorption is conducted. The colloidal suspension is flowing between parallel stretching disks in which the lower disk is positioned at z = 0 and upper disk apart from distance d. The problem is transformed in dimensionless version via described similarity transforms. In the next stage, an analytical technique (VPM) is implemented for… More >

  • Open Access

    ARTICLE

    THE IMPACT OF ALUMINA NANOPARTICLES SUSPENDED IN ETHYLENE GLYCOL ON THE PERFORMANCE EFFICIENCY OF A DOUBLE PIPE HEAT EXCHANGER

    Firas Aziz Alia,*, Adnan M. Alsaffawib , Karam Hashim Mohammeda

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-7, 2020, DOI:10.5098/hmt.15.21

    Abstract The augmentation of the heat transfer in heat exchangers is one of the methods to increase efficiency of the system. The double tube heat exchanger is selected to many suitable techniques of heat transfer enhancement. In this study; the friction factor and heat transfer coefficient of double tube is evaluated experimentally. The Al2O3 nanoparticles dispersed in ethylene glycol (EG) with a diameter 50 nm and the weight concentration (0.1%, 0.3%, 0.5%, 0.7%, 1%) has been utilized. Then the effect of parallel current and counter current with different ranges of Reynolds number (10,000 to 30,000) on the… More >

  • Open Access

    ARTICLE

    Dynamic Analysis of Stochastic Friction Systems Using the Generalized Cell Mapping Method

    Shichao Ma1, 2, *, Xin Ning1, 2, *, Liang Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 49-59, 2020, DOI:10.32604/cmes.2020.06911 - 01 January 2020

    Abstract Friction systems are a kind of typical non-linear dynamical systems in the actual engineering and often generate abundant dynamics phenomena. Because of non-smooth characteristics, it is difficult to handle these systems by conventional analysis methods directly. At the same time, random perturbation often affects friction systems and makes these systems more complicated. In this context, we investigate the steady-state stochastic responses and stochastic P-bifurcation of friction systems under random excitations in this paper. And in order to retain the non-smooth of friction system, the generalized cell mapping (GCM) method is first used to the original… More >

  • Open Access

    ARTICLE

    Tribological Behavior of Plant Oil-Based Extreme Pressure Lubricant Additive in Water-Ethylene Glycol Liquid

    Haiyang Ding1, Xiaohua Yang1, Lina Xu1, Mei Li1, Shouhai Li1, Jianling Xia1,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1391-1401, 2019, DOI:10.32604/jrm.2019.07207

    Abstract A water-soluble lubricant additive (RSOPE) was prepared by esterification reaction using fatty acid from rubber seed oil. The RSOPE was added into water-ethylene glycol (W-EG) solution as lubricant additive. Dispersion stability and rheological properties were investigated. We used a four-ball tribotester to assess the lubrication performance of W-EG based fluid with the RSOPE additive. The stainless-steel surface was analyzed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Good dispersion stability was observed in the RSOPE/W-EG solutions. Furthermore, nonNewtonian fluid behavior at low shear rates and Newtonian fluid behavior at high shear rates was More >

Displaying 21-30 on page 3 of 83. Per Page