Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (80)
  • Open Access

    ARTICLE

    Rotational Friction Damper’s Performance for Controlling Seismic Response of High Speed Railway Bridge-Track System

    Wei Guo1,2, Chen Zeng1,2, Hongye Gou3,*, Yao Hu1,2, Hengchao Xu4, Longlong Guo1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 491-515, 2019, DOI:10.32604/cmes.2019.06162

    Abstract CRTS-II slab ballastless track on bridge is a unique system in China high speed railway. The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure. The bridge system and CRTS-II track system form a complex nonlinear system. To investigate the seismic response of high speed railway (HSR) simply supported bridge-track system, nonlinear models of three-span simply supported bridge with piers of different height and CRTS-II slab ballastless track system are established. By seismic analysis, it is found that shear alveolar in CRTS-II track system is more prone to be damaged… More >

  • Open Access

    ARTICLE

    CONVECTIVE HEAT TRANSFER, FRICTION FACTOR AND THERMAL PERFORMANCE IN A ROUND TUBE EQUIPPED WITH THE MODIFIED V-SHAPED BAFFLE

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-19, 2018, DOI:10.5098/hmt.10.6

    Abstract Convective heat transfer, pressure loss and thermal performance in a heat exchanger tube inserted with the modified V-shaped baffle are investigated numerically. The influences of the flow attack angle (α = 20o , 30o and 45o ), baffle height in term of blockage ratio (b/D = BR = 0.05, 0.10, 0.15, 0.20 and 0.25) and arrangement (The V-tip pointing downstream is called “V-Downstream”, while the V-tip pointing upstream is named “V-Upstream”.) on heat transfer and friction loss are presented for the Reynolds number in range 100 – 1200 (laminar region). The numerical study (finite volume… More >

  • Open Access

    ARTICLE

    DEVELOPMENT OF NEW CORRELATIONS FOR NUSSELT NUMBER AND FRICTION FACTOR OF /WATER BASED NANOFLUID FLOW IN V-PATTERN PROTRUSION RIBBED SQUARE CHANNEL

    Yashwant Singha , Rajesh Maithanib , Sunil Kumara , Ehsan Gholamalizadehc , Anil Kumara,d,*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-16, 2018, DOI:10.5098/hmt.11.33

    Abstract Nanofluids play important roles in the heat transfer and flow characteristics in ribbed square channels. Systematic experiments are conducted to measure heat transfer enhancement and TiO2-H2O based nanofluid flow characteristics on a protruded with combined V-type ribbed square channel. Reynolds number studied in the channel range from 4000-18000. Investigational parameters of square channel contain, volume fraction range of 1.0- 4.0%, particle diameter range of 30nm-45nm, relative protruded rib height range of 0.10-0.25, ratio of protruded height to print diameter range of 0.8- 2.0, relative protruded rib pitch ratio range of 2.0-3.5 and angle of attack of… More >

  • Open Access

    ARTICLE

    AN EXPLICIT AND CONTINUOUS FRICTION FACTOR CORRELATION FOR HELICAL TUBES WITH ARBITRARY ROUGHNESS

    Ralph Eismanna,† , Robert Adamsb

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.4

    Abstract Convergence of numerical schemes for pipe network analysis requires continuous modelling of pressure losses in the transition region between laminar and turbulent regions. Several existing correlations for the friction factor of straight pipes and helical tubes are presented. Based on these correlations a new explicit correlation for helical tubes with arbitrary surface roughness is derived. The friction factor is expressed as a continuous function of the Reynolds number covering laminar, transitional, and turbulent flow regions. Potential sources of error are also discussed, including the effects of tube deformation caused by the bending process. More >

  • Open Access

    ARTICLE

    Simulation of Solid Particle Interactions Including Segregated Lamination by Using MPS Method

    Kyung Sung Kim1, Moo-Hyun Kim2,*, Hakun Jang3, Hee Chen Cho4

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.1, pp. 11-29, 2018, DOI:10.31614/cmes.2018.00199

    Abstract A new MPS (Moving Particle Semi-implicit) method is developed to simulate the behaviors and interactions of multiple fine solid particles as a continuum. As fluid particles are affected by viscosity, so solid particles are affected by friction. The solid particle dynamics for landslides, dumping, and gravity sorting etc. which can be difficult to simulate using conventional MPS methods, are modeled in this paper using the developed multi-solid-particle MPS method that benefits from drawing comparisons with the corresponding fluid particle behaviors. The present MPS results for dumping solid particles are verified against the corresponding DEM (Discrete… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Convective Heat Transfer and Friction in Solar Air Heater with Thin Ribs

    Sanjay K. Sharma1, V. R. Kalamkar1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.3, pp. 295-319, 2018, DOI:10.3970/cmes.2018.114.295

    Abstract The three-dimensional numerical investigation of an incompressible flow through rib roughened solar air heater is carried out. A combination of thin transverse and truncated ribs is attached on the absorber plate to study its effect on the heat transfer and friction factor. The parameters in the form of Reynolds number (Re) of 4000-16000, relative roughness pitch (P/e) of 8-18 and relative roughness height (e/Dh) of 0.0366-0.055 is considered for the analysis. The CFD code ANSYS FLUENT is used to solve the governing equations of turbulent flow. The RNG k–ε turbulence model is used to solve More >

  • Open Access

    ARTICLE

    A Coupled Friction-Poroelasticity Model of Chimneying Shows that Confined Cells Can Mechanically Migrate Without Adhesions

    Solenne Mondésert-Deveraux1, *, Rachele Allena2, Denis Aubry1

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 155-176, 2018, DOI:10.3970/mcb.2018.03053

    Abstract Cell migration is the cornerstone of many biological phenomena such as cancer metastasis, immune response or organogenesis. Adhesion-based motility is the most renown and examined motility mode, but in an adhesion-free confined environment or simply to achieve a higher migration speed, cells can adopt a very interesting bleb-based migration mode called “chimneying”. This mode rests on the sharp synchronization between the active contraction of the cells uropod and the passive friction force between the cell and the confining surface. In this paper, we propose a one dimensional poroelastic model of chimneying which considers the active… More >

  • Open Access

    ARTICLE

    Investigation in the Effects of Configuration Parameters on the Thermal Behavior of Novel Conical Friction Plate in Continuously Sliding Condition

    Yanzhong Wang1, Xiangyu Wu1,*

    CMC-Computers, Materials & Continua, Vol.56, No.3, pp. 353-363, 2018, DOI:10.3970/cmc.2018.03714

    Abstract To investigate the effects of configuration parameters and operation condition on the thermal behavior of novel conical friction plate, a three-dimensional finite element model of conical friction plate is established for numerical simulation. The conical surface configuration and friction heat generation of novel conical friction surfaces are discussed. The results indicate that the thermal behavior of the conical friction plate during continuously sliding period is influenced by the conical surface configuration. Maximum temperature occurs in the conical friction plate with cone angle of 24°. The maximum temperature value of friction plate is increased 7.4°C, when More >

  • Open Access

    ARTICLE

    Numerical Solutions of Unsteady MHD Flow Heat Transfer Over a Stretching Surface with Suction or Injection

    G. Venkata Ramana Reddy1,*, Y. Hari Krishna1

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.3, pp. 213-222, 2018, DOI:10.3970/fdmp.2018.00411

    Abstract The objective of the present problem is to investigate a two-dimensional unsteady flow of a viscous incompressible electrically conducting fluid over a stretching surface taking into account a transverse magnetic field of constant strength. Applying the similarity transformation, the governing boundary layer equations of the problem converted into nonlinear ordinary differential equations and then solved numerically using fourth order Runge-Kutta method with shooting technique. The effects of various parameters on the velocity and temperature fields as well as the skin-friction coefficient and Nusselt number are presented graphically and discussed qualitatively. More >

  • Open Access

    ARTICLE

    MHD SLIP FLOW AND HEAT TRANSFER OVER AN EXPONENTIALLY STRETCHING PERMEABLE SHEET EMBEDDED IN A POROUS MEDIUM WITH HEAT SOURCE

    P. R. Sharmaa , Sushila Choudharya,* , O. D. Makindeb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.18

    Abstract Steady two dimensional laminar magnetohydrodynamic (MHD) slip flow and heat transfer of a viscous incompressible and electrically conducting fluid past over a flat exponentially non-conducting stretching porous sheet embedded in a porous medium with non uniform permeability in the presence of non uniform heat source is investigated. The governing equations of velocity and temperature distributions are solved numerically and the effects of different physical parameters are shown through graphs. The rate of shear stress and the rate of heat transfer at the sheet are derived, discussed numerically and their numerical values for various values of More >

Displaying 31-40 on page 4 of 80. Per Page