Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,024)
  • Open Access

    ARTICLE

    Nonlinear Thermal Buoyancy on Ferromagnetic Liquid Stream Over a Radiated Elastic Surface with Non Fourier Heat Flux

    T. K. Sreelakshmi1, Abraham Annamma1, A. S. Chethan1, M. Krishna Murthy2, C. S. K. Raju3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 599-616, 2021, DOI:10.32604/cmes.2021.013077

    Abstract The current article discusses the heat transfer characteristics of ferromagnetic liquid over an elastic surface with the thermal radiation and non-Fourier heat flux. In most of the existing studies, the heat flux is considered as constant, but whereas we incorporated the non-Fourier flux to get the exact performance of the flow. Also, we excluded the PWT and PHF cases to control the boundary layer of the flow. The governing equations related to our contemplate are changed into non-linear ordinary differential equations (ODE’s) by utilizing appropriate similarity changes, which are at the point enlightened by Runge–Kutta based shooting approach. The equations… More >

  • Open Access

    ARTICLE

    MHD Maxwell Fluid with Heat Transfer Analysis under Ramp Velocity and Ramp Temperature Subject to Non-Integer Differentiable Operators

    Thabet Abdeljawad1,2,3, Muhammad Bilal Riaz4,5, Syed Tauseef Saeed6,*, Nazish Iftikhar6

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 821-841, 2021, DOI:10.32604/cmes.2021.012529

    Abstract The main focus of this study is to investigate the impact of heat generation/absorption with ramp velocity and ramp temperature on magnetohydrodynamic (MHD) time-dependent Maxwell fluid over an unbounded plate embedded in a permeable medium. Non-dimensional parameters along with Laplace transformation and inversion algorithms are used to find the solution of shear stress, energy, and velocity profile. Recently, new fractional differential operators are used to define ramped temperature and ramped velocity. The obtained analytical solutions are plotted for different values of emerging parameters. Fractional time derivatives are used to analyze the impact of fractional parameters (memory effect) on the dynamics… More >

  • Open Access

    ARTICLE

    Novel Analytical Thermal Performance Rate Analysis in ZnO-SAE50 Nanolubricant: Nonlinear Mathematical Model

    Adnan1, Umar Khan2, Naveed Ahmed3, Syed Tauseef Mohyud-Din4, Ilyas Khan5,*, El-Sayed M. Sherif6,7

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 477-489, 2021, DOI:10.32604/cmc.2021.012739

    Abstract The investigation of local thermal transport rate in the nanolubricants is significant. These lubricants are broadly used in environmental pollution, mechanical engineering and in the paint industry due to high thermal performance rate. Therefore, thermal transport in ZnO-SAE50 nanolubricant under the impacts of heat generation/absorption is conducted. The colloidal suspension is flowing between parallel stretching disks in which the lower disk is positioned at z = 0 and upper disk apart from distance d. The problem is transformed in dimensionless version via described similarity transforms. In the next stage, an analytical technique (VPM) is implemented for the solution purpose. The… More >

  • Open Access

    ARTICLE

    Analysis of Magnetic Resistive Flow of Generalized Brinkman Type Nanofluid Containing Carbon Nanotubes with Ramped Heating

    Muhammad Saqib1, Ilyas Khan2,*, Sharidan Shafie1, Ahmad Qushairi Mohamad1, El-Sayed M. Sherif3,4

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 1069-1084, 2021, DOI:10.32604/cmc.2021.012000

    Abstract In recent times, scientists and engineers have been most attracted to electrically conducted nanofluids due to their numerous applications in various fields of science and engineering. For example, they are used in cancer treatment (hyperthermia), magnetic resonance imaging (MRI), drug-delivery, and magnetic refrigeration (MR). Bearing in mind the significance and importance of electrically conducted nanofluids, this article aims to study an electrically conducted water-based nanofluid containing carbon nanotubes (CNTs). CNTs are of two types, single-wall carbon nanotubes (SWCNTs) and multiple-wall carbon nanotubes (MWCNTs). The CNTs (SWCNTs and MWCNTs) have been dispersed in regular water as base fluid to form water-CNTs… More >

  • Open Access

    ARTICLE

    Nanofluid Flows Within Porous Enclosures Using Non-Linear Boussinesq Approximation

    Sameh E. Ahmed1,2,*, Dalal Alrowaili3, Ehab Mahmoud Mohamed4,5, Abdelraheem M. Aly1,2

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3195-3213, 2021, DOI:10.32604/cmc.2021.012471

    Abstract In this paper, the Galerkin finite element method (FEM) together with the characteristic-based split (CBS) scheme are applied to study the case of the non-linear Boussinesq approximation within sinusoidal heating inclined enclosures filled with a non-Darcy porous media and nanofluids. The enclosure has an inclination angle and its side-walls have varying sinusoidal temperature distributions. The working fluid is a nanofluid that is consisting of water as a based nanofluid and Al2O3 as nanoparticles. The porous medium is modeled using the Brinkman Forchheimer extended Darcy model. The obtained results are analyzed over wide ranges of the non-linear Boussinesq parameter 0 ≤… More >

  • Open Access

    ARTICLE

    Two-Phase Flow of Blood with Magnetic Dusty Particles in Cylindrical Region: A Caputo Fabrizio Fractional Model

    Anees Imitaz1, Aamina Aamina1, Farhad Ali2,3,*, Ilyas Khan4, Kottakkaran Sooppy Nisar5

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2253-2264, 2021, DOI:10.32604/cmc.2021.012470

    Abstract The present study is focused on the unsteady two-phase flow of blood in a cylindrical region. Blood is taken as a counter-example of Brinkman type fluid containing magnetic (dust) particles. The oscillating pressure gradient has been considered because for blood flow it is necessary to investigate in the form of a diastolic and systolic pressure. The transverse magnetic field has been applied externally to the cylindrical tube to study its impact on both fluids as well as particles. The system of derived governing equations based on Navier Stoke’s, Maxwell and heat equations has been generalized using the well-known Caputo–Fabrizio (C–F)… More >

  • Open Access

    ARTICLE

    Experimental Investigation on the Performance of Heat Pump Operating with Copper and Alumina Nanofluids

    Faizan Ahmed*, Waqar Ahmed Khan, Jamal Nayfeh

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2843-2856, 2021, DOI:10.32604/cmc.2021.012041

    Abstract In the present study, an attempt is made to enhance the performance of heat pump by utilizing two types of nanofluids namely, copper and alumina nanofluids. These nanofluids were employed around the evaporator coil of the heat pump. The nanofluids were used to enhance the heat input to the system by means of providing an external jacket around the evaporator coil. Both the nanofluids were prepared in three volume fractions 1%, 2% and 5%. Water was chosen as the base fluid. The performance of the heat pump was assessed by calculating the coefficient of performance of the system when it… More >

  • Open Access

    ARTICLE

    20(R)-ginsenoside Rg3, a product of high-efficiency thermal deglycosylation of ginsenoside Rd, exerts protective effects against scrotal heat-induced spermatogenic damage in mice

    WEI LIU1,#, ZI WANG1,2,#, JING LENG1, HENG WEI1, SHEN REN1,2, XIAOJIE GONG3, CHEN CHEN4, YINGPING WANG1,2, RUI ZHANG1,2,*, WEI LI1,2,*

    BIOCELL, Vol.44, No.4, pp. 655-669, 2020, DOI:10.32604/biocell.2020.013202

    Abstract Heat stress (HS) reaction can lead to serious physiological dysfunction associated with cardiovascular and various organ diseases. Ginsenoside Rg3 (G-Rg3) is a representative component of ginseng rare saponin and can protect against multiple organs, also used as functional food to adjust the balance of the human body, but the therapeutic effect and molecular mechanism of G-Rg3 on male diseases under HS are underexplored. The aim of the present study, G-Rg3 was prepared through the efficient conversion of ginsenoside Rd and investigate the contribution of G-Rg3 to testicular injury induced exposure to HS. All mice were divided into four groups as… More >

  • Open Access

    ARTICLE

    Performance Assessment of Heat Exchangers for Process Heat Integration

    Fenwicks Shombe Musonye1,*, Hiram Ndiritu2, Robert Kinyua3

    Energy Engineering, Vol.118, No.2, pp. 211-224, 2021, DOI:10.32604/EE.2021.013890

    Abstract Pinch Analysis is an attractive solution for reduction of thermal energy costs in thermo-chemical industries. In this approach, maximum internally recoverable heat is determined and a heat exchange network is designed to meet the recovery targets. The thermal performance of a heat exchanger over its lifetime is however a concern to industries. Thermal performance of a heat exchanger is affected by many factors which include the physical properties of the shell and tube materials, and the chemical properties of the heat transfer fluid. In this study, thermal performance of shell and tube heat exchangers designed to meet heat recovery targets… More >

  • Open Access

    ARTICLE

    Experimental Research of the Radiator Thermal Performance Test Equipment and Its Application in Heating System

    Lian Zhang1,2,3,*, Linjun Fan4, Xin Xu5, Baowen Cao1, Heng Zhang2, Lihong Song3

    Energy Engineering, Vol.118, No.2, pp. 399-410, 2021, DOI:10.32604/EE.2021.012647

    Abstract Radiator thermal performance test equipment plays a key role in the processing of developing a new type of heat radiator and its application products. The precise of temperature controlling, temperature measuring and flow measuring are the vital factors for a radiator thermal performance test equipment. Based on the above background, this paper improves the measurement and control system of radiator thermal performance test equipment, which improves the accuracy of the radiator thermal performance test equipment. This paper also optimizes the software and hardware system simultaneously so as to improve the precision of the auto-test system of test equipment. The flow… More >

Displaying 651-660 on page 66 of 1024. Per Page