Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    ARTICLE

    An in Vitro Approach to Investigate the Role of Abscisic Acid in Alleviating the Negative Effects of Chilling Stress on Banana Shoots

    Ibrahim Hmmam1,*, Ali Raza2, Ivica Djalovic3, Nagwa Khedr1, Abdou Abdellatif1

    Phyton-International Journal of Experimental Botany, Vol.92, No.6, pp. 1695-1711, 2023, DOI:10.32604/phyton.2023.028317

    Abstract Banana is a tropical crop cultivated in warm places. Chilling stress in Egypt is making banana crops less productive. Abscisic acid (ABA), a key plant hormone, regulates metabolic and physiological processes and protects plants from a variety of stresses. In vitro growing banana shoots were pre-treated with ABA at four concentrations (0, 25, 50, and 100 mM) and chilled at 5°C for 24 h, followed by a six-day recovery period at 25°C. By comparing ABA treatments to both positive and negative controls, physiological and biochemical changes were investigated. Chilling stress (5°C) caused a considerable increase in lipid peroxidation and ion… More >

  • Open Access

    REVIEW

    ROS-hormone interaction in regulating integrative défense signaling of plant cell

    DURGA KORA1, ANANYA DEY1, BABITA PAL1, UTHPAL KRISHNA ROY1,2, NIVEDITA DEY1, TREESHA BHATACHARJEE1, SOUMEN BHATTACHARJEE1,*

    BIOCELL, Vol.47, No.3, pp. 503-521, 2023, DOI:10.32604/biocell.2023.025744

    Abstract The elaborate redox network of the cell, comprising of events like turnover of reactive oxygen species (ROS), redox sensing, signaling, expression of redox-sensitive genes, etc., often orchestrates with other bonafide hormonal signaling pathways through their synergistic or antagonistic action in the plant cell. The redox cue generated in plant cells under fluctuating environmental conditions can significantly influence other hormonal biosynthetic or signaling mechanisms, thereby modulating physiology towards stress acclimation and defense. There is also strong evidence of the recruitment of ROS as a ‘second messenger’ in different hormonal signaling pathways under stress. Moreover, the retrograde signaling initiated by ROS also… More >

  • Open Access

    ARTICLE

    Salt Stress Affects the Growth and Yield of Wheat (Triticum aestivum L.) by Altering the Antioxidant Machinery and Expression of Hormones and Stress-Specific Genes

    Shahid Hussain1, Rui Zhang1, Shuli Liu1, Yang Wang1, Irshad Ahmad2, Yinglong Chen1, Hongyan Hou3, Qigen Dai1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 861-881, 2023, DOI:10.32604/phyton.2023.025487

    Abstract

    Understanding physiological responses in saline agriculture may facilitate wheat breeding programs. Based on a screening test, the Ningmai-14 (NM-14) and Yangmai-23 (YM-23) wheat cultivars were selected for further experiments to understand the underlying salinity tolerance mechanism. This study investigated the effects of five salinity levels such as Control (CK) = 0 (without NaCl stress), S1 = 0.20%, S2 = 0.25%, S3 = 0.30% and S4 = 0.35% of NaCl concentrations of soil on wheat plants. The results showed that increased salinity concentration reduced the growth and yield of wheat cultivars (NM-14 and YM-23). However, YM-23 (12.7%) yielded more than NM-14… More >

  • Open Access

    REVIEW

    Research Progress and Application of Plant Branching

    Yaru Yang1, Yulan Hu1, Ping Li1, John T. Hancock2, Xiangyang Hu1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 679-689, 2023, DOI:10.32604/phyton.2023.024904

    Abstract Plant branching development plays an important role in plant morphogenesis (aboveground plant type), the number and angle of branches are important agronomic characters that determine crop plant type. Effective branches determine the number of panicles or pods of crops and then control the yield of crops. With the rapid development of plant genomics and molecular genetics, great progress has been made in the study of branching development. In recent years, a series of important branching-related genes have been validated from Arabidopsis thaliana, rice, pea, tomato and maize mutants. It is reviewed that plant branching development is controlled by genetic elements… More >

  • Open Access

    ARTICLE

    Effects of Auxin at Different Concentrations on the Growth, Root Morphology and Cadmium Uptake of Maize (Zea mays L.)

    Lingyan Hu, Haiyan Chen, Guangqun Zhang, Zihao Yu, Kai Yan, Fangdong Zhan, Yongmei He*

    Phyton-International Journal of Experimental Botany, Vol.91, No.9, pp. 1933-1944, 2022, DOI:10.32604/phyton.2022.020041

    Abstract Indoleacetic acid (IAA) is an important regulator that plays a crucial role in plant growth and responses to abiotic stresses. In the present study, a sand cultivation experiment was carried out to investigate the effects of IAA at different concentrations (0, 0.01, 0.1, 0.5, 1, and 2.5 mmol/L) on maize growth, root morphology, mineral elements (Ca, Mg) and Cd uptake under 20 mg/kg Cd stress. The results showed that 0.01 mmol/L is the optimal IAA concentration for enhancing the Cd tolerance of maize. Compared with the control treatment, 0.01 mmol/L IAA promoted maize growth, with significant increases in the height,… More >

  • Open Access

    ARTICLE

    Phytohormones Accumulation and Distribution in Shoots and Roots of Haploid, Diploid and Tetraploid Barley Seedlings Derived from Microspore Culture

    Longhua Zhou1,2,#, Ting He1,2,#, Jing Li1,2,3, Guimei Guo1,2, Yingbo Li1,2, Hongwei Xu1,2, Runhong Gao1,2, Linli Huang1,2, Yifei Wang1,2, Ruiju Lu1,2, Zhiwei Chen1,2,*, Chenghong Liu1,2,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.7, pp. 1419-1428, 2022, DOI:10.32604/phyton.2022.019912

    Abstract Phytohormones play important roles in plant growth and development, and polyploids are thought to be an important method for plant breeding. However, the relationship between ploidy and phytohormone is still unclear. In this study, barley at three ploidy levels were produced by microspore culture. Therefore, we further analyzed the phytohormone content in the shoots and roots of the three kinds of barley materials to study the effect of ploidy on phytohormones accumulation and distribution. The results showed that Abscisic acid (ABA), gibberellin (GA), jasmonic acid (JA), auxin (IAA), salicylic acid (SA) and cytokinin (CTK) were successfully determined in shoots and… More >

  • Open Access

    REVIEW

    Salinity Stress in Wheat: Effects, Mechanisms and Management Strategies

    Mahmoud F. Seleiman1,2,#,*, Muhammad Talha Aslam3,#, Bushra Ahmed Alhammad4, Muhammad Umair Hassan5, Rizwan Maqbool3, Muhammad Umer Chattha3, Imran Khan3, Harun Ireri Gitari6, Omer S. Uslu7, Rana Roy8, Martin Leonardo Battaglia9

    Phyton-International Journal of Experimental Botany, Vol.91, No.4, pp. 667-694, 2022, DOI:10.32604/phyton.2022.017365

    Abstract Salinity stress is a major threat to global food production and its intensity is continuously increasing because of anthropogenic activities. Wheat is a staple food and a source of carbohydrates and calories for the majority of people across the globe. However, wheat productivity is adversely affected by salt stress, which is associated with a reduction in germination, growth, altered reproductive behavior and enzymatic activity, disrupted photosynthesis, hormonal imbalance, oxidative stress, and yield reductions. Thus, a better understanding of wheat (plant) behavior to salinity stress has essential implications to devise counter and alleviation measures to cope with salt stress. Different approaches… More >

  • Open Access

    ARTICLE

    Identification of PtGai (a DELLA protein) in trifoliate orange and expression patterns in response to drought stress

    XIAOFEN CHENG1, ABEER HASHEM2,3, ELSAYED FATHI ABD_ALLAH4, QIANGSHENG WU1,5,*, KAMIL KUČA5,*

    BIOCELL, Vol.45, No.6, pp. 1687-1694, 2021, DOI:10.32604/biocell.2021.017581

    Abstract Gibberellins (GAs) are an important hormone in regulating plant growth and development, and DELLA protein is an essential negative regulator of GA signal transduction. The aim of the study was to clone a GA-inhibiting protein DELLA from trifoliate orange (Poncirus trifoliata L. Raf.) and to analyze the bioinformations and expression patterns of the protein gene in tissues and in response to drought stress. A DELLA protein was isolated from trifoliate orange and named as PtGai (Genebank number: MZ170959). The PtGai protein had 1731 bp open reading frames, along with 576 amino acid codes, and also grouped with sweet orange (XM_006430552.4).… More >

  • Open Access

    ARTICLE

    Transcriptome analysis of purple pigment formation in Colocasia esculenta

    FANGLIAN HE1, WEIQING DONG1,*, SHAOLONG WEI2,*, ZUYANG QIU3, JINGLI HUANG4, HUIPING JIANG1, SHIYU HUANG1, LILI LIU3

    BIOCELL, Vol.45, No.3, pp. 785-796, 2021, DOI:10.32604/biocell.2021.014418

    Abstract Taro (Colocasia esculenta (L.) Schott) is an important crop in Africa, Southeast Asia, and subtropics and is used as a food and medicine. The purple color pigmentation is an appealing character in taro. We sampled taro corms of the cultivar ‘Lipu Taro’ at four developmental stages, including LPYS1 (without purple pigment, 50 days of development (DOD)), LPYS2 (very few purple pigments, 75 DOD), LPYS3 (moderate purple pigments, 115 DOD) and LPYS4 (high purple pigments, 205 DOD). The purpose of our study was to identify the key genes underpinning the purple pigmentation in taro based on RNA-sequencing. Through RNA-Seq, 6453 differentially… More >

  • Open Access

    ARTICLE

    Benzyl Amino Purine and Gibberellic Acid Coupled to Nitrogen-Limited Stress Induce Fatty Acids, Biomass Accumulation, and Gene Expression in Scenedesmus Obliquus

    Hans Christian Correa-Aguado1,3, Gloria Viviana Cerrillo-Rojas1, Alejandro Rocha-Uribe2, Ruth Elena Soria-Guerra2, José Francisco Morales-Domínguez1,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.2, pp. 515-531, 2021, DOI:10.32604/phyton.2021.013619

    Abstract The need for renewable energy sources makes microalgae an essential feedstock for biofuels production. The molecular aspects and the response to nitrogen (N)-limited conditions with a phytohormone stimulus in microalgae have been slightly explored. In this work, Scenedesmus obliquus was used as a study model to analyze the effect of benzyl amino purine (BAP) and gibberellic acid (GA) coupled to nitrogen limitation on cell growth, biomass and fatty acids. The selected 10-5 M BAP increased the biomass by 1.44-fold, and 10-6 M GA by 1.35-fold. The total lipids also increased by 2.8 and 1.11-fold, respectively. The 10-5 M BAP and… More >

Displaying 11-20 on page 2 of 38. Per Page