Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (889)
  • Open Access

    ARTICLE

    Leveraging Transformers for Detection of Arabic Cyberbullying on Social Media: Hybrid Arabic Transformers

    Amjad A. Alsuwaylimi1,*, Zaid S. Alenezi2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3165-3185, 2025, DOI:10.32604/cmc.2025.061674 - 16 April 2025

    Abstract Cyberbullying is a remarkable issue in the Arabic-speaking world, affecting children, organizations, and businesses. Various efforts have been made to combat this problem through proposed models using machine learning (ML) and deep learning (DL) approaches utilizing natural language processing (NLP) methods and by proposing relevant datasets. However, most of these endeavors focused predominantly on the English language, leaving a substantial gap in addressing Arabic cyberbullying. Given the complexities of the Arabic language, transfer learning techniques and transformers present a promising approach to enhance the detection and classification of abusive content by leveraging large and pretrained… More >

  • Open Access

    ARTICLE

    A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation

    Hamza Murad Khan1, Anwar Khan1,*, Santos Gracia Villar2,3,4, Luis Alonso Dzul Lopez2,5,6, Abdulaziz Almaleh7, Abdullah M. Al-Qahtani8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3369-3388, 2025, DOI:10.32604/cmc.2025.060474 - 16 April 2025

    Abstract Traffic forecasting with high precision aids Intelligent Transport Systems (ITS) in formulating and optimizing traffic management strategies. The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity. To address this problem, this paper uses the Tree-structured Parzen Estimator (TPE) to tune the hyperparameters of the Long Short-term Memory (LSTM) deep learning framework. The Tree-structured Parzen Estimator (TPE) uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples. This ensures fast convergence in… More >

  • Open Access

    ARTICLE

    Multi-Neighborhood Enhanced Harris Hawks Optimization for Efficient Allocation of Hybrid Renewable Energy System with Cost and Emission Reduction

    Elaine Yi-Ling Wu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1185-1214, 2025, DOI:10.32604/cmes.2025.064636 - 11 April 2025

    Abstract Hybrid renewable energy systems (HRES) offer cost-effectiveness, low-emission power solutions, and reduced dependence on fossil fuels. However, the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints. This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization (MNEHHO) algorithm to address the allocation of HRES components. The proposed approach integrates key technical parameters, including charge-discharge efficiency, storage device configurations, and renewable energy fraction. We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability. The MNEHHO algorithm employs multiple neighborhood structures… More >

  • Open Access

    ARTICLE

    Maximum Power Point Tracking Control of Offshore Wind-Photovoltaic Hybrid Power Generation System with Crane-Assisted

    Xiangyang Cao1,2, Yaojie Zheng1,2, Hanbin Xiao1,2,*, Min Xiao2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 289-334, 2025, DOI:10.32604/cmes.2025.063954 - 11 April 2025

    Abstract This study investigates the Maximum Power Point Tracking (MPPT) control method of offshore wind-photovoltaic hybrid power generation system with offshore crane-assisted. A new algorithm of Global Fast Integral Sliding Mode Control (GFISMC) is proposed based on the tip speed ratio method and sliding mode control. The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter. An offshore wind power generation system model is presented to verify the algorithm effect. An offshore More >

  • Open Access

    ARTICLE

    Intrusion Detection in NSL-KDD Dataset Using Hybrid Self-Organizing Map Model

    Noveela Iftikhar1, Mujeeb Ur Rehman1, Mumtaz Ali Shah2, Mohammed J. F. Alenazi3, Jehad Ali4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 639-671, 2025, DOI:10.32604/cmes.2025.062788 - 11 April 2025

    Abstract Intrusion attempts against Internet of Things (IoT) devices have significantly increased in the last few years. These devices are now easy targets for hackers because of their built-in security flaws. Combining a Self-Organizing Map (SOM) hybrid anomaly detection system for dimensionality reduction with the inherited nature of clustering and Extreme Gradient Boosting (XGBoost) for multi-class classification can improve network traffic intrusion detection. The proposed model is evaluated on the NSL-KDD dataset. The hybrid approach outperforms the baseline line models, Multilayer perceptron model, and SOM-KNN (k-nearest neighbors) model in precision, recall, and F1-score, highlighting the proposed More >

  • Open Access

    ARTICLE

    MOCBOA: Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems

    Nour Elhouda Chalabi1, Abdelouahab Attia2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Frank Werner6, Pradeep Jangir7, Mohammad Shokouhifar8,9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 967-1008, 2025, DOI:10.32604/cmes.2025.062332 - 11 April 2025

    Abstract Multi-objective optimization is critical for problem-solving in engineering, economics, and AI. This study introduces the Multi-Objective Chef-Based Optimization Algorithm (MOCBOA), an upgraded version of the Chef-Based Optimization Algorithm (CBOA) that addresses distinct objectives. Our approach is unique in systematically examining four dominance relations—Pareto, Epsilon, Cone-epsilon, and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front. Our comparison investigation, which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering, mechanical design, and power systems, reveals that the dominance approach More >

  • Open Access

    ARTICLE

    Statistical Inference for Kumaraswamy Distribution under Generalized Progressive Hybrid Censoring Scheme with Application

    Magdy Nagy*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 185-223, 2025, DOI:10.32604/cmes.2025.061865 - 11 April 2025

    Abstract In this present work, we propose the expected Bayesian and hierarchical Bayesian approaches to estimate the shape parameter and hazard rate under a generalized progressive hybrid censoring scheme for the Kumaraswamy distribution. These estimates have been obtained using gamma priors based on various loss functions such as squared error, entropy, weighted balance, and minimum expected loss functions. An investigation is carried out using Monte Carlo simulation to evaluate the effectiveness of the suggested estimators. The simulation provides a quantitative assessment of the estimates accuracy and efficiency under various conditions by comparing them in terms of More >

  • Open Access

    ARTICLE

    Radiative Flow of Ag-Fe3O4/Water Hybrid Nanofluids Induced by a Shrinking/Stretching Disk with Influence of Velocity and Thermal Slip Conditions

    Muhammad Zubair Mustafa1, Sumera Dero1, Liaquat Ali Lund2, Mehboob Ul Hassan3, Umair Khan4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 499-513, 2025, DOI:10.32604/cmes.2025.061804 - 11 April 2025

    Abstract This paper discusses the model of the boundary layer (BL) flow and the heat transfer characteristics of hybrid nanofluid (HNF) over shrinking/stretching disks. In addition, the thermal radiation and the impact of velocity and thermal slip boundary conditions are also examined. The considered hybrid nano-fluid contains silver (Ag) and iron oxide (Fe3O4) nanoparticles dispersed in the water to prepare the Ag-Fe3O4/water-based hybrid nanofluid. The requisite posited partial differential equations model is converted to ordinary differential equations using similarity transformations. For a numerical solution, the shooting method in Maple is employed. Moreover, the duality in solutions is… More > Graphic Abstract

    Radiative Flow of Ag-Fe<sub><b>3</b></sub>O<sub><b>4</b></sub>/Water Hybrid Nanofluids Induced by a Shrinking/Stretching Disk with Influence of Velocity and Thermal Slip Conditions

  • Open Access

    ARTICLE

    SL-COA: Hybrid Efficient and Enhanced Coati Optimization Algorithm for Structural Reliability Analysis

    Yunhan Ling1, Huajun Peng2, Yiqing Shi1,*, Chao Xu1, Jingzhen Yan1, Jingjing Wang1, Hui Ma3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 767-808, 2025, DOI:10.32604/cmes.2025.061763 - 11 April 2025

    Abstract The traditional first-order reliability method (FORM) often encounters challenges with non-convergence of results or excessive calculation when analyzing complex engineering problems. To improve the global convergence speed of structural reliability analysis, an improved coati optimization algorithm (COA) is proposed in this paper. In this study, the social learning strategy is used to improve the coati optimization algorithm (SL-COA), which improves the convergence speed and robustness of the new heuristic optimization algorithm. Then, the SL-COA is compared with the latest heuristic optimization algorithms such as the original COA, whale optimization algorithm (WOA), and osprey optimization algorithm… More >

  • Open Access

    ARTICLE

    An Equivalent Fuel Consumption Minimizing Strategy for Fuel Cell Ships Considering Power Degradation

    Diju Gao, Shuai Li*

    Energy Engineering, Vol.122, No.4, pp. 1425-1442, 2025, DOI:10.32604/ee.2025.062101 - 31 March 2025

    Abstract To safeguard the ocean ecosystem, fuel cells are excellent candidates as the primary energy supply for marine vessels due to their high efficiency, low noise, and cleanliness. However, fuel cells in hybrid power systems are highly susceptible to load transients, which can severely damage fuel cells and shorten their lifespan. Therefore, the formulation of energy management strategies accounting for power degradation is crucial and urgent. In this study, an improved strategy for equivalent consumption minimization strategy (ECMS) considering power degradation is proposed. The improved energy control strategy effectively controls the energy distribution of hydrogen fuel… More > Graphic Abstract

    An Equivalent Fuel Consumption Minimizing Strategy for Fuel Cell Ships Considering Power Degradation

Displaying 41-50 on page 5 of 889. Per Page