Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (703)
  • Open Access

    ARTICLE

    An Improved Multi-Objective Hybrid Genetic-Simulated Annealing Algorithm for AGV Scheduling under Composite Operation Mode

    Jiamin Xiang1, Ying Zhang1, Xiaohua Cao1,*, Zhigang Zhou2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3443-3466, 2023, DOI:10.32604/cmc.2023.045120

    Abstract This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles (AGVs) under the composite operation mode. The multi-objective model aims to minimize the maximum completion time, the total distance covered by AGVs, and the distance traveled while empty-loaded. The improved hybrid algorithm combines the improved genetic algorithm (GA) and the simulated annealing algorithm (SA) to strengthen the local search ability of the algorithm and improve the stability of the calculation results. Based on the characteristics of the composite operation mode, the authors introduce the combined coding and parallel decoding… More >

  • Open Access

    ARTICLE

    SCChOA: Hybrid Sine-Cosine Chimp Optimization Algorithm for Feature Selection

    Shanshan Wang1,2,3, Quan Yuan1, Weiwei Tan1, Tengfei Yang1, Liang Zeng1,2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3057-3075, 2023, DOI:10.32604/cmc.2023.044807

    Abstract Feature Selection (FS) is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy. However, due to the high dimensionality and complexity of the dataset, most optimization algorithms for feature selection suffer from a balance issue during the search process. Therefore, the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm (SCChOA) to address the feature selection problem. In this approach, firstly, a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm (SCA) and the Chimp Optimization Algorithm (ChOA), enabling a more effective search in the objective space. Secondly,… More >

  • Open Access

    ARTICLE

    Blockchain-Based Cognitive Computing Model for Data Security on a Cloud Platform

    Xiangmin Guo1,2, Guangjun Liang1,2,*, Jiayin Liu1,2, Xianyi Chen3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3305-3323, 2023, DOI:10.32604/cmc.2023.044529

    Abstract Cloud storage is widely used by large companies to store vast amounts of data and files, offering flexibility, financial savings, and security. However, information shoplifting poses significant threats, potentially leading to poor performance and privacy breaches. Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms, ensuring businesses can focus on business development. To ensure data security in cloud platforms, this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing (HD2C) model. However, the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of Things (IoT) in the cloud.… More >

  • Open Access

    ARTICLE

    Reliability-Based Model for Incomplete Preventive Replacement Maintenance of Photovoltaic Power Systems

    Wei Chen, Ming Li*, Tingting Pei, Cunyu Sun, Huan Lei

    Energy Engineering, Vol.121, No.1, pp. 125-144, 2024, DOI:10.32604/ee.2023.042812

    Abstract At present, the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance, breakdown maintenance, and condition-based maintenance, which is very likely to lead to over- or under-repair of equipment. Therefore, a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed. First, a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment, and the equipment is replaced when its reliability drops to the replacement threshold in the last cycle. Then, based on… More >

  • Open Access

    ARTICLE

    A Hybrid Classification and Identification of Pneumonia Using African Buffalo Optimization and CNN from Chest X-Ray Images

    Nasser Alalwan1,*, Ahmed I. Taloba2, Amr Abozeid3, Ahmed Ibrahim Alzahrani1, Ali H. Al-Bayatti4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2497-2517, 2024, DOI:10.32604/cmes.2023.029910

    Abstract An illness known as pneumonia causes inflammation in the lungs. Since there is so much information available from various X-ray images, diagnosing pneumonia has typically proven challenging. To improve image quality and speed up the diagnosis of pneumonia, numerous approaches have been devised. To date, several methods have been employed to identify pneumonia. The Convolutional Neural Network (CNN) has achieved outstanding success in identifying and diagnosing diseases in the fields of medicine and radiology. However, these methods are complex, inefficient, and imprecise to analyze a big number of datasets. In this paper, a new hybrid method for the automatic classification… More >

  • Open Access

    ARTICLE

    New Antenna Array Beamforming Techniques Based on Hybrid Convolution/Genetic Algorithm for 5G and Beyond Communications

    Shimaa M. Amer1, Ashraf A. M. Khalaf2, Amr H. Hussein3,4, Salman A. Alqahtani5, Mostafa H. Dahshan6, Hossam M. Kassem3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2749-2767, 2024, DOI:10.32604/cmes.2023.029138

    Abstract Side lobe level reduction (SLL) of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service (QOS) in recent and future wireless communication systems starting from 5G up to 7G. Furthermore, it improves the array gain and directivity, increasing the detection range and angular resolution of radar systems. This study proposes two highly efficient SLL reduction techniques. These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm (GA) to develop the Conv/GA and DConv/GA, respectively. The convolution process determines the element’s excitations while the GA optimizes… More >

  • Open Access

    ARTICLE

    MHD (SWCNTS + MWCNTS)/H2O-Based Williamson Hybrid Nanouids Flow Past Exponential Shrinking Sheet in Porous Medium

    Hamzeh Taha Alkasasbeh1,*, Muhammad Khairul Anuar Mohamed2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 265-279, 2023, DOI:10.32604/fhmt.2023.041539

    Abstract The present study numerically investigates the flow and heat transfer of porous Williamson hybrid nanofluid on an exponentially shrinking sheet with magnetohydrodynamic (MHD) effects. The nonlinear partial differential equations which governed the model are first reduced to a set of ordinary differential equations by using the similarity transformation. Next, the BVP4C solver is applied to solve the equations by considering the pertinent fluid parameters such as the permeability parameter, the magnetic parameter, the Williamson parameter, the nanoparticle volume fractions and the wall mass transfer parameter. The single (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) nanoparticles are taken as the hybrid nanoparticles.… More >

  • Open Access

    ARTICLE

    Heat Transfer Characteristics for Solar Energy Aspect on the Flow of Tangent Hyperbolic Hybrid Nanofluid over a Sensor Wedge and Stagnation Point Surface

    Asmaa Habib Alanzi, N. Ameer Ahammad*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 179-197, 2023, DOI:10.32604/fhmt.2023.042009

    Abstract The conversion of solar radiation to thermal energy has recently attracted a lot of interest as the requirement for renewable heat and power grows. Due to their enhanced ability to promote heat transmission, nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems. This article focus solar energy aspect on the effects of the thermal radiation in the flow of a hyperbolic tangent nanofluid containing magnesium oxide (MgO) and silver (Ag) are the nanoparticle with the base fluid as kerosene through a wedge and stagnation. The system of hybrid nanofluid transport equations are transformed into ordinary differential systems using… More >

  • Open Access

    ARTICLE

    Numerical Examination of Free Convection Flow of Casson Ternary Hybrid Nanofluid across Magnetized Stretching Sheet Impacted by Newtonian Heating

    Mohammed Z. Swalmeh1,*, Firas A. Alwawi2, A. A. Altawallbeh3, Wejdan Mesa’adeen4, Feras M. Al Faqih4, Ahmad M. Awajan4

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 505-522, 2023, DOI:10.32604/fhmt.2023.044300

    Abstract In current study, the influence of magnetic field (MHD) on heat transfer of natural convection boundary layer flow in Casson ternary hybrid nanofluid past a stretching sheet is studied using numerical simulation. The Newtonian heating boundary conditions that depend on the temperature and velocity terms are taken into this investigation. The particular dimensional governing equations, for the studied problem, are converted to the system of partial differential equations utilizing adequate similarity transformation. Consequently, the system of equations is numerically solved using well-known Kellar box numerical techniques. The obtained numerical results are in excellent approval with previous literature results. The existence… More >

  • Open Access

    ARTICLE

    Evaluating the Derivative Value of Smart Grid Investment under Dual Carbon Target: A Hybrid Multi-Criteria Decision-Making Analysis

    Na Yu1, Changzheng Gao2, Xiuna Wang2, Dongwei Li2,*, Weiyang You2

    Energy Engineering, Vol.120, No.12, pp. 2879-2901, 2023, DOI:10.32604/ee.2023.029426

    Abstract With the goal of “carbon peaking and carbon neutralization”, it is an inevitable trend for investing smart grid to promote the large-scale grid connection of renewable energy. Smart grid investment has a significant driving effect (derivative value), and evaluating this value can help to more accurately grasp the external effects of smart grid investment and support the realization of industrial linkage value with power grid investment as the core. Therefore, by analyzing the characterization of the derivative value of smart grid driven by investment, this paper constructs the evaluation index system of the derivative value of smart grid investment including… More >

Displaying 41-50 on page 5 of 703. Per Page