Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,010)
  • Open Access

    ARTICLE

    Harnessing TLBO-Enhanced Cheetah Optimizer for Optimal Feature Selection in Cancer Data

    Bibhuprasad Sahu1, Amrutanshu Panigrahi2, Abhilash Pati2, Ashis Kumar Pati3, Janmejaya Mishra4, Naim Ahmad5,*, Salman Arafath Mohammed6, Saurav Mallik7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1029-1054, 2025, DOI:10.32604/cmes.2025.069618 - 30 October 2025

    Abstract Metaheuristic optimization methods are iterative search processes that aim to efficiently solve complex optimization problems. These basically find the solution space very efficiently, often without utilizing the gradient information, and are inspired by the bio-inspired and socially motivated heuristics. Metaheuristic optimization algorithms are increasingly applied to complex feature selection problems in high-dimensional medical datasets. Among these, Teaching-Learning-Based optimization (TLBO) has proven effective for continuous design tasks by balancing exploration and exploitation phases. However, its binary version (BTLBO) suffers from limited exploitation ability, often converging prematurely or getting trapped in local optima, particularly when applied to… More >

  • Open Access

    ARTICLE

    Hybrid Taguchi and Machine Learning Framework for Optimizing and Predicting Mechanical Properties of Polyurethane/Nanodiamond Nanocomposites

    Markapudi Bhanu Prasad1, Borhen Louhichi2, Santosh Kumar Sahu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 483-519, 2025, DOI:10.32604/cmes.2025.069395 - 30 October 2025

    Abstract This study investigates the mechanical behavior of polyurethane (PU) nanocomposites reinforced with nanodiamonds (NDs) and proposes an integrated optimization–prediction framework that combines the Taguchi method with machine learning (ML). The Taguchi design of experiments (DOE), based on an L9 orthogonal array, was applied to investigate the influence of composite type (pure PU, 0.1 wt.% ND, 0.5 wt.% ND), temperature (145°C–165°C), screw speed (50–70 rpm), and pressure (40–60 bar). The mechanical tests included tensile, hardness, and modulus measurements, performed under varying process parameters. Results showed that the addition of 0.5 wt.% ND substantially improved PU performance,… More >

  • Open Access

    ARTICLE

    Leaf Morphological Variation and Heterosis on Hybrid Progenies of Populus ussuriensis and P. simonii × P. nigra

    Heng Zhang1,#, Meng Wang1,#, Dong Zeng1,2, Yunbo Xu1, Dongyuan Guo1, Xuanchen Liu1,3, Zhanqi Ren4, Jinzi Zhang1, Yuhang Liu1, Qiuyu Wang1, Shuo Yu1, Guanzheng Qu1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.10, pp. 3205-3216, 2025, DOI:10.32604/phyton.2025.069994 - 29 October 2025

    Abstract Hybridization remains an important method for breeding new poplar varieties. It results in significant variation in leaf phenotype among parents and offspring, and among offspring themselves. This study aimed to investigate whether leaf shape variations were similar in offspring produced from reciprocal crosses. Specifically, two hybrid combinations were produced: the direct cross with Populus ussuriensis as the maternal parent and P. simonii × P. nigra as the paternal parent (HY53), and the reciprocal cross with P. simonii × P. nigra as the maternal parent and P. ussuriensis as the paternal parent (HY268). Using 3-month-old rooted cuttings from 40 clones (36 F1 hybrids… More >

  • Open Access

    ARTICLE

    Sunflower (Helianthus annuus L.) Hybrids: Strategic Crossbreeding Techniques to Efficiently Enhance Yield and Oil Quality

    Fida Hussain1,*, Farooq Khan2, Javed Ahmad1, Heqiang Huo3, Tao Jiang3, Iqrar Rana4, Sajida Habib5, Muhammad Umer Farooq1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.10, pp. 3231-3249, 2025, DOI:10.32604/phyton.2025.069654 - 29 October 2025

    Abstract The analysis of combining ability and heterosis is very important in enhancing the yield and oil quality of sunflowers under adverse conditions, and it reveals the potential of the parents and the mechanism of gene action. In this study, twenty-one hybrids were developed by crossing seven cytoplasmic male sterile (CMS) lines with three restorer lines and evaluated for agronomic and quality traits. Highly significant general combining ability (GCA) and specific combining ability (SCA) effects were observed, confirming the role of both additive and non-additive gene actions. Among the tested crosses, A-42 × R-86, A-92 ×… More >

  • Open Access

    ARTICLE

    Response of Nitrogen Use Efficiency, Yield and Quality of Rice to Nitrogen Reduction Combined with Organic Fertilizer in Karst Region

    Guiling Xu1,#, Xiaoxuan You1,#, Yuehua Feng1,2,*, Xiaoke Wang1, Yuqi Gao1, Hongjun Ren1, Zhili Han1, Jiale Li1

    Phyton-International Journal of Experimental Botany, Vol.94, No.10, pp. 3251-3268, 2025, DOI:10.32604/phyton.2025.067997 - 29 October 2025

    Abstract Nitrogen (N) reduction combined with organic fertilizer has become a highly popular fertilization method, meeting the sustainable development of agriculture. A field experiment was conducted to investigate the effects of N reduction (NR) and combined application of organic fertilizer (OF) on N utilization, yield, and quality of hybrid indica rice in the karst area. Using rice ‘Yixiangyou2115’ as the material, a split-plot design experiment was carried out with OF application rate as the main plots and NR rate as the subplots. The OF application rate had three levels: M0 (0 kg/ha), M1 (low OF, 1673… More >

  • Open Access

    ARTICLE

    Impact of Window-to-Wall Ratio on Thermal Comfort and Energy Performance of Hybrid Cooling Systems

    Dong Liu1, Runze Zhang1, Anjie Hu1, Na Liu1, Liu Tang2,3,*, Xiaozhou Wu4, Jun Wang2,5

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2579-2612, 2025, DOI:10.32604/fdmp.2025.070407 - 30 October 2025

    Abstract This study compares two end-cooling systems, convective–radiant combined cooling (FR+FC) and fan coil convection (FC), through continuous experimental investigations, focusing on the impact of window-to-wall ratio (WWR) on indoor thermal comfort, temperature distribution, humidity, and energy consumption. Results show that increasing WWR amplifies indoor temperature fluctuations. While the overall predicted mean vote (PMV) remains within the Level-II comfort range (−1.0 to +1.0), the FC system exhibits pronounced local PMV gradients near west-facing windows, especially at 80% WWR, where transient PMV reaches 1.26 close to the window, 0.89 higher than at the room center. In contrast, More >

  • Open Access

    ARTICLE

    Role of Thermal Radiation Effect on Unsteady Dissipative MHD Mixed Convection of Hybrid Nanofluid over an Inclined Stretching Sheet with Chemical Reaction

    Shaik Mohammed Ibrahim1, Bhavanam Naga Lakshmi2, Chundru Maheswari3, Hasan Koten4,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1555-1574, 2025, DOI:10.32604/fhmt.2025.069392 - 31 October 2025

    Abstract Magnetohydrodynamic (MHD) radiative chemically reactive mixed convection flow of a hybrid nanofluid (Al2O3Cu/H2O) across an inclined, porous, and stretched sheet is examined in this study, along with its unsteady heat and mass transport properties. The hybrid nanofluid’s enhanced heat transfer efficiency is a major benefit in high-performance engineering applications. It is composed of two separate nanoparticles suspended in a base fluid and is chosen for its improved thermal properties. Thermal radiation, chemical reactions, a transverse magnetic field, surface stretching with time, injection or suction through the porous medium, and the effect of inclination, which introduces gravity-induced… More >

  • Open Access

    ARTICLE

    Analysis of Heat Transfer inside Rectangular Micro-Channel with Wavy Surface and Hybrid Nanofluids

    Banan Najim Abdullah1, Karam Hashim Mohammed1, Ammar Hassan Soheel1, Bashar Mahmood Ali2, Omar Rafae Alomar1,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1681-1700, 2025, DOI:10.32604/fhmt.2025.066814 - 31 October 2025

    Abstract The current work aims to numerically investigate the impact of using (50% ZnO and 50% Al2O3) hybrid nanofluid (HNf) on the performance of convective heat transfer inside a horizontal wavy micro-channel. This issue represents a novel approach that has not been extensively covered in previous research and provides more valuable insights into the performance of HNfs in complex flow geometries. The conjugate heat transfer approach is used to demonstrate the influence of adding hybrid nanoparticles (50% Al2O3 and 50% ZnO) to pure water on the rate of heat transfer. The governing equations are numerically solved by… More >

  • Open Access

    REVIEW

    Artificial Neural Networks and Taguchi Methods for Energy Systems Optimization: A Comprehensive Review

    Mir Majid Etghani1, Homayoun Boodaghi2,*

    Energy Engineering, Vol.122, No.11, pp. 4385-4474, 2025, DOI:10.32604/ee.2025.070668 - 27 October 2025

    Abstract Energy system optimization has become crucial for enhancing efficiency and environmental sustainability. This comprehensive review examines the synergistic application of Artificial Neural Networks (ANN) and Taguchi methods in optimizing diverse energy systems. While previous reviews have focused on these methods separately, this paper presents the first integrated analysis of both approaches across multiple energy applications. We systematically analyze their implementation in: Internal combustion engines, Thermal energy storage systems, Solar energy systems, Wind and tidal turbines, Heat exchangers, and hybrid energy systems. Our findings reveal that ANN models consistently achieve prediction accuracies exceeding 90% when compared More > Graphic Abstract

    Artificial Neural Networks and Taguchi Methods for Energy Systems Optimization: A Comprehensive Review

  • Open Access

    ARTICLE

    HERL-ViT: A Hybrid Enhanced Vision Transformer Based on Regional-Local Attention for Malware Detection

    Boyan Cui1,2, Huijuan Wang1,*, Yongjun Qi1,*, Hongce Chen1, Quanbo Yuan1,3, Dongran Liu1, Xuehua Zhou1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5531-5553, 2025, DOI:10.32604/cmc.2025.070101 - 23 October 2025

    Abstract The proliferation of malware and the emergence of adversarial samples pose severe threats to global cybersecurity, demanding robust detection mechanisms. Traditional malware detection methods suffer from limited feature extraction capabilities, while existing Vision Transformer (ViT)-based approaches face high computational complexity due to global self-attention, hindering their efficiency in handling large-scale image data. To address these issues, this paper proposes a novel hybrid enhanced Vision Transformer architecture, HERL-ViT, tailored for malware detection. The detection framework involves five phases: malware image visualization, image segmentation with patch embedding, regional-local attention-based feature extraction, enhanced feature transformation, and classification. Methodologically,… More >

Displaying 61-70 on page 7 of 1010. Per Page