Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (711)
  • Open Access

    ARTICLE

    Gradient Optimizer Algorithm with Hybrid Deep Learning Based Failure Detection and Classification in the Industrial Environment

    Mohamed Zarouan1, Ibrahim M. Mehedi1,2,*, Shaikh Abdul Latif3, Md. Masud Rana4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1341-1364, 2024, DOI:10.32604/cmes.2023.030037

    Abstract Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamless operation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0. Specifically, various modernized industrial processes have been equipped with quite a few sensors to collect process-based data to find faults arising or prevailing in processes along with monitoring the status of processes. Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Due to the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experience and human knowledge, intellectual… More >

  • Open Access

    ARTICLE

    An Adaptive Hybrid Optimization Strategy for Resource Allocation in Network Function Virtualization

    Chumei Wen1, Delu Zeng2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1617-1636, 2024, DOI:10.32604/cmes.2023.029864

    Abstract With the rapid development of Network Function Virtualization (NFV), the problem of low resource utilization in traditional data centers is gradually being addressed. However, existing research does not optimize both local and global allocation of resources in data centers. Hence, we propose an adaptive hybrid optimization strategy that combines dynamic programming and neural networks to improve resource utilization and service quality in data centers. Our approach encompasses a service function chain simulation generator, a parallel architecture service system, a dynamic programming strategy for maximizing the utilization of local server resources, a neural network for predicting the global utilization rate of… More >

  • Open Access

    ARTICLE

    Flow Breakdown of Hybrid Nanofluid on a Rigid Surface with Power Law Fluid as Lubricated Layers

    Mirza Naveed Jahangeer Baig1, Nadeem Salamat1, Sohail Nadeem2,3,*, Naeem Ullah2, Mohamed Bechir Ben Hamida4,5,6, Hassan Ali Ghazwani7, Sayed M. Eldin8, A. S. Al-Shafay9

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1485-1499, 2024, DOI:10.32604/cmes.2023.029351

    Abstract This work investigates an oblique stagnation point flow of hybrid nanofluid over a rigid surface with power law fluid as lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting in water H2O as a base fluid. The mathematical formulation of flow configuration is presented in terms of differential system that is nonlinear in nature. The thermal aspects of the flow field are also investigated by assuming the surface is a heated surface with a constant temperature T. Numerical solutions to the governing mathematical model are calculated by the RK45 algorithm. The results based on… More >

  • Open Access

    ARTICLE

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

    Zhaohui Xia1,3, Baichuan Gao3, Chen Yu2,*, Haotian Han3, Haobo Zhang3, Shuting Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1103-1137, 2024, DOI:10.32604/cmes.2023.029177

    Abstract This paper aims to solve large-scale and complex isogeometric topology optimization problems that consume significant computational resources. A novel isogeometric topology optimization method with a hybrid parallel strategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equation solving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency of CPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload between CPU and GPU. To illustrate the advantages of the proposed method, three benchmark examples are tested to verify the hybrid parallel strategy in this paper. The results… More > Graphic Abstract

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

  • Open Access

    ARTICLE

    Hybrid Dynamic Optimization for Multilevel Security System in Disseminating Confidential Information

    Shahina Anwarul1, Sunil Kumar2, Ashok Bhansali3, Hammam Alshazly4,*, Hany S. Hussein5,6

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3145-3163, 2023, DOI:10.32604/csse.2023.041061

    Abstract Security systems are the need of the hour to protect data from unauthorized access. The dissemination of confidential information over the public network requires a high level of security. The security approach such as steganography ensures confidentiality, authentication, integrity, and non-repudiation. Steganography helps in hiding the secret data inside the cover media so that the attacker can be confused during the transmission process of secret data between sender and receiver. Therefore, we present an efficient hybrid security model that provides multifold security assurance. To this end, a rectified Advanced Encryption Standard (AES) algorithm is proposed to overcome the problems existing… More >

  • Open Access

    ARTICLE

    Liver Tumor Segmentation Based on Multi-Scale and Self-Attention Mechanism

    Fufang Li, Manlin Luo*, Ming Hu, Guobin Wang, Yan Chen

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2835-2850, 2023, DOI:10.32604/csse.2023.039765

    Abstract Liver cancer has the second highest incidence rate among all types of malignant tumors, and currently, its diagnosis heavily depends on doctors’ manual labeling of CT scan images, a process that is time-consuming and susceptible to subjective errors. To address the aforementioned issues, we propose an automatic segmentation model for liver and tumors called Res2Swin Unet, which is based on the Unet architecture. The model combines Attention-Res2 and Swin Transformer modules for liver and tumor segmentation, respectively. Attention-Res2 merges multiple feature map parts with an Attention gate via skip connections, while Swin Transformer captures long-range dependencies and models the input… More >

  • Open Access

    ARTICLE

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

    Hu Shi, Wei Cai, Xin Wang*, Lei Song, Yuan Hu*

    Journal of Renewable Materials, Vol.11, No.12, pp. 3991-4006, 2023, DOI:10.32604/jrm.2023.029888

    Abstract To solve the fire accidents caused by coal combustion, this work prepared four hybrid hydrogel materials using bio-based polymers, flame retardants, and inorganic materials. Compared to pure water and 3.5 wt% MgCl2 solution, the as-prepared hydrogel presents good fire prevention performance. In addition, it is found that CO and CO2 are not produced by coal when the pyrolysis temperature is lower than 200°C. During low-temperature pyrolysis, CO is more likely to be produced than CO2, indicating inadequate pyrolysis behavior. At the same time, the addition of fire-preventing hydrogel can not only decrease the maximum CO2 concentration before the critical temperature… More > Graphic Abstract

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

  • Open Access

    ARTICLE

    Classification of Brain Tumors Using Hybrid Feature Extraction Based on Modified Deep Learning Techniques

    Tawfeeq Shawly1, Ahmed Alsheikhy2,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 425-443, 2023, DOI:10.32604/cmc.2023.040561

    Abstract According to the World Health Organization (WHO), Brain Tumors (BrT) have a high rate of mortality across the world. The mortality rate, however, decreases with early diagnosis. Brain images, Computed Tomography (CT) scans, Magnetic Resonance Imaging scans (MRIs), segmentation, analysis, and evaluation make up the critical tools and steps used to diagnose brain cancer in its early stages. For physicians, diagnosis can be challenging and time-consuming, especially for those with little expertise. As technology advances, Artificial Intelligence (AI) has been used in various domains as a diagnostic tool and offers promising outcomes. Deep-learning techniques are especially useful and have achieved… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection on Original European Credit Card Holder Dataset Using Ensemble Machine Learning Technique

    Yih Bing Chu*, Zhi Min Lim, Bryan Keane, Ping Hao Kong, Ahmed Rafat Elkilany, Osama Hisham Abusetta

    Journal of Cyber Security, Vol.5, pp. 33-46, 2023, DOI:10.32604/jcs.2023.045422

    Abstract The proliferation of digital payment methods facilitated by various online platforms and applications has led to a surge in financial fraud, particularly in credit card transactions. Advanced technologies such as machine learning have been widely employed to enhance the early detection and prevention of losses arising from potentially fraudulent activities. However, a prevalent approach in existing literature involves the use of extensive data sampling and feature selection algorithms as a precursor to subsequent investigations. While sampling techniques can significantly reduce computational time, the resulting dataset relies on generated data and the accuracy of the pre-processing machine learning models employed. Such… More >

  • Open Access

    ARTICLE

    Clinical Knowledge-Based Hybrid Swin Transformer for Brain Tumor Segmentation

    Xiaoliang Lei1, Xiaosheng Yu2,*, Hao Wu3, Chengdong Wu2,*, Jingsi Zhang2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3797-3811, 2023, DOI:10.32604/cmc.2023.042069

    Abstract Accurate tumor segmentation from brain tissues in Magnetic Resonance Imaging (MRI) imaging is crucial in the pre-surgical planning of brain tumor malignancy. MRI images’ heterogeneous intensity and fuzzy boundaries make brain tumor segmentation challenging. Furthermore, recent studies have yet to fully employ MRI sequences’ considerable and supplementary information, which offers critical a priori knowledge. This paper proposes a clinical knowledge-based hybrid Swin Transformer multimodal brain tumor segmentation algorithm based on how experts identify malignancies from MRI images. During the encoder phase, a dual backbone network with a Swin Transformer backbone to capture long dependencies from 3D MR images and a… More >

Displaying 61-70 on page 7 of 711. Per Page