Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (103)
  • Open Access

    ARTICLE

    Cervical Cancer Detection Based on Novel Decision Tree Approach

    S. R. Sylaja Vallee Narayan1,*, R. Jemila Rose2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1025-1038, 2023, DOI:10.32604/csse.2023.022564 - 15 June 2022

    Abstract Cervical cancer is a disease that develops in the cervix’s tissue. Cervical cancer mortality is being reduced due to the growth of screening programmers. Cervical cancer screening is a big issue because the majority of cervical cancer screening treatments are invasive. Hence, there is apprehension about standard screening procedures, as well as the time it takes to learn the results. There are different methods for detecting problems in the cervix using Pap (Papanicolaou-stained) test, colposcopy, Computed Tomography (CT), Magnetic Resonance Image (MRI) and ultrasound. To obtain a clear sketch of the infected regions, using a… More >

  • Open Access

    ARTICLE

    Generative Deep Belief Model for Improved Medical Image Segmentation

    Prasanalakshmi Balaji*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1-14, 2023, DOI:10.32604/iasc.2023.026341 - 06 June 2022

    Abstract Medical image assessment is based on segmentation at its fundamental stage. Deep neural networks have been more popular for segmentation work in recent years. However, the quality of labels has an impact on the training performance of these algorithms, particularly in the medical image domain, where both the interpretation cost and inter-observer variation are considerable. For this reason, a novel optimized deep learning approach is proposed for medical image segmentation. Optimization plays an important role in terms of resources used, accuracy, and the time taken. The noise in the raw medical image are processed using More >

  • Open Access

    ARTICLE

    Automated Skin Lesion Diagnosis and Classification Using Learning Algorithms

    A. Soujanya1,*, N. Nandhagopal2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 675-687, 2023, DOI:10.32604/iasc.2023.025930 - 06 June 2022

    Abstract Due to the rising occurrence of skin cancer and inadequate clinical expertise, it is needed to design Artificial Intelligence (AI) based tools to diagnose skin cancer at an earlier stage. Since massive skin lesion datasets have existed in the literature, the AI-based Deep Learning (DL) models find useful to differentiate benign and malignant skin lesions using dermoscopic images. This study develops an Automated Seeded Growing Segmentation with Optimal EfficientNet (ARGS-OEN) technique for skin lesion segmentation and classification. The proposed ASRGS-OEN technique involves the design of an optimal EfficientNet model in which the hyper-parameter tuning process More >

  • Open Access

    ARTICLE

    Unconstrained Hand Dorsal Veins Image Database and Recognition System

    Mustafa M. Al Rifaee1,*, Mohammad M. Abdallah1, Mosa I. Salah2, Ayman M. Abdalla1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5063-5073, 2022, DOI:10.32604/cmc.2022.030033 - 28 July 2022

    Abstract Hand veins can be used effectively in biometric recognition since they are internal organs that, in contrast to fingerprints, are robust under external environment effects such as dirt and paper cuts. Moreover, they form a complex rich shape that is unique, even in identical twins, and allows a high degree of freedom. However, most currently employed hand-based biometric systems rely on hand-touch devices to capture images with the desired quality. Since the start of the COVID-19 pandemic, most hand-based biometric systems have become undesirable due to their possible impact on the spread of the pandemic.… More >

  • Open Access

    ARTICLE

    Automatic Leukaemia Segmentation Approach for Blood Cancer Classification Using Microscopic Images

    Anuj Sharma1, Deepak Prashar2, Arfat Ahmad Khan3, Faizan Ahmed Khan4, Settawit Poochaya3,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3629-3648, 2022, DOI:10.32604/cmc.2022.030879 - 16 June 2022

    Abstract Leukaemia is a type of blood cancer that is caused by undeveloped White Blood Cells (WBC), and it is also called a blast blood cell. In the marrow of human bones, leukaemia is developed and is responsible for blood cell generation with leukocytes and WBC, and if any cell gets blasted, then it may become a cause of death. Therefore, the diagnosis of leukaemia in its early stages helps greatly in the treatment along with saving human lives. Subsequently, in terms of detection, image segmentation techniques play a vital role, and they turn out to… More >

  • Open Access

    ARTICLE

    Efficient Segmentation Approach for Different Medical Image Modalities

    Walid El-Shafai1,2, Amira A. Mahmoud1, El-Sayed M. El-Rabaie1, Taha E. Taha1, Osama F. Zahran1, Adel S. El-Fishawy1, Naglaa F. Soliman3, Amel A. Alhussan4,*, Fathi E. Abd El-Samie1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3119-3135, 2022, DOI:10.32604/cmc.2022.028935 - 16 June 2022

    Abstract This paper presents a study of the segmentation of medical images. The paper provides a solid introduction to image enhancement along with image segmentation fundamentals. In the first step, the morphological operations are employed to ensure image detail protection and noise-immunity. The objective of using morphological operations is to remove the defects in the texture of the image. Secondly, the Fuzzy C-Means (FCM) clustering algorithm is used to modify membership function based only on the spatial neighbors instead of the distance between pixels within local spatial neighbors and cluster centers. The proposed technique is very… More >

  • Open Access

    ARTICLE

    Hybrid Segmentation Approach for Different Medical Image Modalities

    Walid El-Shafai1,2, Amira A. Mahmoud1, El-Sayed M. El-Rabaie1, Taha E. Taha1, Osama F. Zahran1, Adel S. El-Fishawy1, Naglaa F. Soliman3, Amel A. Alhussan4,*, Fathi E. Abd El-Samie1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3455-3472, 2022, DOI:10.32604/cmc.2022.028722 - 16 June 2022

    Abstract The segmentation process requires separating the image region into sub-regions of similar properties. Each sub-region has a group of pixels having the same characteristics, such as texture or intensity. This paper suggests an efficient hybrid segmentation approach for different medical image modalities based on particle swarm optimization (PSO) and improved fast fuzzy C-means clustering (IFFCM) algorithms. An extensive comparative study on different medical images is presented between the proposed approach and other different previous segmentation techniques. The existing medical image segmentation techniques incorporate clustering, thresholding, graph-based, edge-based, active contour, region-based, and watershed algorithms. This paper More >

  • Open Access

    ARTICLE

    Semi-Supervised Medical Image Segmentation Based on Generative Adversarial Network

    Yun Tan1,2, Weizhao Wu2, Ling Tan3, Haikuo Peng2, Jiaohua Qin2,*

    Journal of New Media, Vol.4, No.3, pp. 155-164, 2022, DOI:10.32604/jnm.2022.031113 - 13 June 2022

    Abstract At present, segmentation for medical image is mainly based on fully supervised model training, which consumes a lot of time and labor for dataset labeling. To address this issue, we propose a semi-supervised medical image segmentation model based on a generative adversarial network framework for automated segmentation of arteries. The network is mainly composed of two parts: a segmentation network for medical image segmentation and a discriminant network for evaluating segmentation results. In the initial stage of network training, a fully supervised training method is adopted to make the segmentation network and the discrimination network More >

  • Open Access

    ARTICLE

    Meta-heuristics for Feature Selection and Classification in Diagnostic Breast Cancer

    Doaa Sami Khafaga1, Amel Ali Alhussan1,*, El-Sayed M. El-kenawy2,3, Ali E. Takieldeen3, Tarek M. Hassan4, Ehab A. Hegazy5, Elsayed Abdel Fattah Eid6, Abdelhameed Ibrahim7, Abdelaziz A. Abdelhamid8,9

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 749-765, 2022, DOI:10.32604/cmc.2022.029605 - 18 May 2022

    Abstract One of the most common kinds of cancer is breast cancer. The early detection of it may help lower its overall rates of mortality. In this paper, we robustly propose a novel approach for detecting and classifying breast cancer regions in thermal images. The proposed approach starts with data preprocessing the input images and segmenting the significant regions of interest. In addition, to properly train the machine learning models, data augmentation is applied to increase the number of segmented regions using various scaling ratios. On the other hand, to extract the relevant features from the… More >

  • Open Access

    ARTICLE

    Review of Nodule Mineral Image Segmentation Algorithms for Deep-Sea Mineral Resource Assessment

    Wei Song1,2,3, Lihui Dong1, Xiaobing Zhao1,3, Jianxin Xia4,*, Tongmu Liu5, Yuxi Shi6

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1649-1669, 2022, DOI:10.32604/cmc.2022.027214 - 18 May 2022

    Abstract A large number of nodule minerals exist in the deep sea. Based on the factors of difficulty in shooting, high economic cost and high accuracy of resource assessment, large-scale planned commercial mining has not yet been conducted. Only experimental mining has been carried out in areas with high mineral density and obvious benefits after mineral resource assessment. As an efficient method for deep-sea mineral resource assessment, the deep towing system is equipped with a visual system for mineral resource analysis using collected images and videos, which has become a key component of resource assessment. Therefore,… More >

Displaying 51-60 on page 6 of 103. Per Page