Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (270)
  • Open Access

    REVIEW

    Do tensile and shear forces exerted on cells influence mechanotransduction through stored energy considerations?

    FREDERICK H. SILVER1,2,*, TANMAY DESHMUKH2

    BIOCELL, Vol.48, No.4, pp. 525-540, 2024, DOI:10.32604/biocell.2024.047965

    Abstract All tissues in the body are subjected externally to gravity and internally by collagen fibril and cellular retractive forces that create stress and energy equilibrium required for homeostasis. Mechanotransduction involves mechanical work (force through a distance) and energy storage as kinetic and potential energy. This leads to changes in cell mitosis or apoptosis and the synthesis or loss of tissue components. It involves the application of energy directly to cells through integrin-mediated processes, cell-cell connections, stretching of the cell cytoplasm, and activation of the cell nucleus via yes-associated protein (YAP) and transcriptional coactivator with PDZ-motif (TAZ). These processes involve numerous… More >

  • Open Access

    ARTICLE

    A Study on the Influence of Social Media Use on Psychological Anxiety among Young Women

    Tao Liu1, Huiyin Shi1, Chen Chen1,*, Rong Fu2,*

    International Journal of Mental Health Promotion, Vol.26, No.3, pp. 199-209, 2024, DOI:10.32604/ijmhp.2024.046303

    Abstract To explore the relationship between social influence, social comparison, clarity of self-concept, and psychological anxiety among young women during their usage of social networking sites, our study selected 338 young women aged 14–34 from the social site platforms of Little Red Book and Weibo for questionnaire surveys. The Passive Social Network Utilization Scale, Social Comparison Scale (SCS), Social Influence Questionnaire, Self-Concept Clarity Scale (SCCS), and Generalized Anxiety Disorder Scale (GAD-7) were employed to measure the subjects. Our results show that the frequency of passive social media use is positively related to the level of psychological anxiety. Social comparison, social influence,… More >

  • Open Access

    ARTICLE

    The Influence of Internet Use on Women’s Depression and Its Countermeasures—Empirical Analysis Based on Data from CFPS

    Dengke Xu1, Linlin Shen1, Fangzhong Xu2,*

    International Journal of Mental Health Promotion, Vol.26, No.3, pp. 229-238, 2024, DOI:10.32604/ijmhp.2024.046023

    Abstract Based on China Family Panel Studies (CFPS) 2018 data, the multiple linear regression model is used to analyze the effects of Internet use on women’s depression, and to test the robustness of the regression results. At the same time, the effects of Internet use on mental health of women with different residence, age, marital status and physical health status are analyzed. Then, we can obtain that Internet use has a significant promoting effect on women’s mental health, while the degree of Internet use has a significant inhibitory effect on women’s mental health. In addition, the study found that women’s age,… More >

  • Open Access

    ARTICLE

    Influence of Poly (vinyl butyral) Modification on the Mechanical and Thermal Properties of Kevlar Fiber Reinforced Novolac epoxy/multiwalled carbon nanotube nanocomposites

    KAVITA*, R.K. TIWARI

    Journal of Polymer Materials, Vol.36, No.2, pp. 195-205, 2019, DOI:10.32381/JPM.2019.36.02.7

    Abstract The effect of poly (vinyl butyral) and acid functionalized multiwalled carbon nanotubes (f-MWCNT) on the thermal and mechanical performance of Kevlar fiber reinforced novolac epoxy nanocomposites was investigated and presented in this paper. Nanocomposite containing 1.5 wt. % poly (vinyl butyral) and 0.5 wt. % f-MWCNT exhibited best thermal and mechanical properties (except flexural strength) among all the nanocomposites reported here. It showed ~5%, 27% and 126 % improvement in tensile strength, young’s modulus and impact strength respectively as compared to the neat novolac epoxy Kevlar composite.Nanocomposite containing 0.5 wt. % f- MWCNT and 2 wt. % poly (vinyl butyral)… More >

  • Open Access

    ARTICLE

    Influence of Bottom Inclination on the Flow Structure in a Rotating Convective Layer

    Andrei Vasiliev, Andrei Sukhanovskii*, Elena Popova

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 739-748, 2024, DOI:10.32604/fdmp.2024.048092

    Abstract The formation of convective flows in a rotating cylindrical layer with an inclined bottom and free surface is studied. Convection is driven by localized cooling at the center of the upper free surface and by rim heating at the bottom near the sidewall. The horizontal temperature difference in a rotating layer leads to the formation of a convective flow with a complex structure. The mean meridional circulation, consisting of three cells, provides a strongly non-uniform differential rotation. As a result of the instability of the main cyclonic zonal flow, the train of baroclinic waves appears in the upper layer. The… More >

  • Open Access

    REVIEW

    Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water: A Review

    Xiufeng Zhu1,2, Jingying Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 671-692, 2024, DOI:10.32604/fdmp.2023.045260

    Abstract

    SR-AOP (sulfate radical advanced oxidation process) is a novel water treatment method able to eliminate refractory organic pollutants. Hydrodynamic cavitation (HC) is a novel green technology, that can effectively produce strong oxidizing sulfate radicals. This paper presents a comprehensive review of the research advancements in these fields and a critical discussion of the principal factors influencing HC-enhanced SR-AOP and the mechanisms of synergistic degradation. Furthermore, some insights into the industrial application of HC/PS are also provided. Current research shows that this technology is feasible at the laboratory stage, but its application on larger scales requires further understanding and exploration. In… More > Graphic Abstract

    Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water: A Review

  • Open Access

    ARTICLE

    Influence of Flap Parameters on the Aerodynamic Performance of a Wind-Turbine Airfoil

    Yuanjun Dai1,2, Jingan Cui1, Baohua Li1,*, Cong Wang1, Kunju Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 771-786, 2024, DOI:10.32604/fdmp.2023.029584

    Abstract A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient, lift coefficient, and drag coefficient. The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil; however, at small attack angles, its influence is significantly reduced. When the angle of attack exceeds the critical stall angle and the flap height is 1.5% of the chord length, the influence of the flap becomes very evident. As the flap height… More >

  • Open Access

    ARTICLE

    The Influence of Air Pollution Concentrations on Solar Irradiance Forecasting Using CNN-LSTM-mRMR Feature Extraction

    Ramiz Gorkem Birdal*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4015-4028, 2024, DOI:10.32604/cmc.2024.048324

    Abstract Maintaining a steady power supply requires accurate forecasting of solar irradiance, since clean energy resources do not provide steady power. The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network (CNN), but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions. This paper proposes a hybrid approach based on deep learning, expanding the feature set by adding new air pollution concentrations, and ranking these features to select and reduce their size to improve efficiency. In order to improve the accuracy… More >

  • Open Access

    ARTICLE

    Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling

    Muhammad Akbar1, Huali Pan1,*, Jiangcheng Huang2, Bilal Ahmed3, Guoqiang Ou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2835-2863, 2024, DOI:10.32604/cmes.2024.046993

    Abstract The present work aims to assess earthquake-induced earth-retaining (ER) wall displacement. This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels, reinforcement concrete facing panels, and gravity-type earth-retaining walls. The finite element (FE) simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses. The seismic performance of different models, which includes reinforcement concrete panels and gravity-type and hollow precast concrete ER walls, was simulated and examined using the FE approach. It also displays comparative studies such as stress distribution, deflection of the wall, acceleration across the… More >

  • Open Access

    ARTICLE

    The Influence of Tartaric Acid in the Silver Nanoparticle Synthesis Using Response Surface Methodology

    Yatim Lailun Ni’mah1, Afaf Baktir2, Dewi Santosaningsih3, Suprapto Suprapto1,*

    Journal of Renewable Materials, Vol.12, No.2, pp. 245-258, 2024, DOI:10.32604/jrm.2023.045514

    Abstract Silver nanoparticles (AgNPs) synthesized using tartaric acid as a capping agent have a great impact on the reaction kinetics and contribute significantly to the stability of AgNPs. The protective layer formed by tartaric acid is an important factor that protects the silver surface and reduces potential cytotoxicity problems. These attributes are critical for assessing the compatibility of AgNPs with biological systems and making them suitable for drug delivery applications. The aim of this research is to conduct a comprehensive study of the effect of tartaric acid concentration, sonication time and temperature on the formation of silver nanoparticles. Using Response Surface… More > Graphic Abstract

    The Influence of Tartaric Acid in the Silver Nanoparticle Synthesis Using Response Surface Methodology

Displaying 1-10 on page 1 of 270. Per Page