Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (272)
  • Open Access

    ARTICLE

    STUDY ON THE CHARACTERISTICS OF CATALYTIC COMBUSTION FURNACE OF NATURAL GAS AND INFLUENCE OF ITS EXHAUST GAS TO PLANT

    Shihong Zhang* , Fangjing Jia, Rui Zhang

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-5, 2017, DOI:10.5098/hmt.8.4

    Abstract This article discussed the radiation and pollutant emissions characteristics of the catalytic combustion furnace based the combustion of lean natural gas-air mixtures in catalytic honeycomb monoliths and the influence of its exhaust gas on schefflera plants growth by means of theory and experiments. The radiation efficiency of the monolith alone varied from approximately 20% to 40%. The glazed tiles heated by the catalytic combustion furnace are more fine and glossy than that of conventional ones. Schefflera plants in experimental group in a greenhouse filling with catalytic combustion exhaust gas. On contrary, schefflera plants in control group stay in indoor environment.… More >

  • Open Access

    ARTICLE

    INFLUENCE OF PORE WALL SURFACE PROPERTY ON FLUX OF CYLINDRICAL-SHAPED NANOPOROUS FILTERING MEMBRANE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-6, 2017, DOI:10.5098/hmt.9.26

    Abstract The influence of pore wall surface property on the flux of a novel cylindrical-shaped nanoporous filtering membrane is analytically studied by using the flow factor approach model for a nanoscale flow. Across the thickness of the membrane are manufactured two concentric cylindrical pores with different radii. The smaller nanoscale pore is for filtration, while the other larger pore is for reducing the flow resistance. It was found that when the larger pore wall surface is hydrophobic, the interaction between the filtered liquid and the smaller pore wall surface has a very significant effect on the value of the optimum ratio… More >

  • Open Access

    ARTICLE

    VARIABLE THERMAL CONDUCTIVITY INFLUENCE ON HYDROMAGNETIC FLOW PAST A STRETCHING CYLINDER IN A THERMALLY STRATIFIED MEDIUM WITH HEAT SOURCE/SINK

    P. Sreenivasulua,*, T. Poornimab,†, N. Bhaskar Reddyc

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.20

    Abstract This paper examines the variable thermal conductivity influence on MHD flow past a thermally stratified stretching cylinder with heat source or sink. The governing partial differential equations of the flow field are converted to a system of non-linear coupled similarity ordinary differential equations. Employing Shooting technique followed by Runge-Kutta method, the system is solved numerically. The effects of the various physical parameters countered in the flow field on the velocity, temperature as well as the skin friction coefficient and the rate of heat transfer near the wall are computed and illustrated graphically. More >

  • Open Access

    ARTICLE

    COMBINED INFLUENCE OF HALL CURRENTS AND JOULE HEATING ON HEMODYNAMIC PERISTALTIC FLOW WITH POROUS MEDIUM THROUGH A VERTICAL TAPERED ASYMMETRIC CHANNEL WITH RADIATION

    S. Ravi Kumar* , S. K. Abzal

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.19

    Abstract The aim of the present attempt is hall currents and joule heating on peristaltic blood flow in porous medium through a vertical tapered asymmetric channel under the influence of radiation. The Mathematical modeling is investigated by utilizing long wavelength and low Reynolds number assumptions. The indicates an appreciable increase in the axial velocity distribution with increase in hall current parameter and porosity parameter whereas the result in axial velocity distribution diminished by increase in magnetic field parameter. The result in pressure gradient reduces by rise in hall current parameter, porosity parameter and volumetric flow rate. The temperature of the fluid… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF SLIP INFLUENCE ON ELECTRIC CONDUCTING VISCOELASTIC FLUID PAST AN ISOTHERMAL CYLINDER

    CH. Amanullaa,b,*, N. Nagendrab , M. Suryanarayana Reddyc

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-13, 2018, DOI:10.5098/hmt.10.10

    Abstract The present study deals with the computational analysis on an electrically conducting magneto viscoelastic fluid over a circular cylinder. Prescribed partial slip effects are also taken into account. The governing physical problem is tackled numerically by using the highly efficient and reliable Keller box algorithm. Impact of sundry physical parameters on physical quantities of interest are evaluated. The influence of Williamson viscoelastic fluid parameter, magnetic body force parameter, Thermal and velocity (hydrodynamic) slip parameters, stream wise variable and Prandtl number on thermos-fluid characteristics are studied graphically. The model is relevant to the simulation of magnetic polymer materials processing. More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Influence of Turbulence Intensity on Iced Conductors Gallop Phenomena

    Yuantao Liu1, Yanzhe Li1,*, Shanpeng Zhao1,2, Youpeng Zhang1, Taizhen Zhang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2533-2547, 2023, DOI:10.32604/fdmp.2023.027471

    Abstract Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena, namely, the highamplitude, low-frequency oscillation of overhead power lines due to the formation of ice structures and the ensuing effect that wind can have on these. In this work, the galloping time history of a wire with distorted (fixed in time) shape due to the formation of ice is analyzed numerically in the frame of a fluid-solid coupling method for different wind speeds and levels of turbulence. The results show that the turbulence intensity has a moderate effect on the increase of the conductor’s aerodynamic lift… More > Graphic Abstract

    Numerical Analysis of the Influence of Turbulence Intensity on Iced Conductors Gallop Phenomena

  • Open Access

    ARTICLE

    Influence of Different Transition Modes on the Performances of a Hydraulic Turbine

    Fengxia Shi1,2, Yucai Tang1,*, Dedong Ma1, Xiangyun Shi1, Guangbiao Zhao1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2481-2497, 2023, DOI:10.32604/fdmp.2023.028416

    Abstract In order to analyze the response of a hydraulic turbine to a variation in the operating conditions, different laws of variation in time of the mass flow rate have been considered. After validating the overall numerical framework through comparison with relevant experiments, the performances of the considered turbine have been analyzed from a fluid-dynamic point of view. The results show that different time profiles of the mass flow rate (in this work, for simplicity, referred to as “transition functions”) have a varying influence on the transient behavior of the turbine. When a quadratic function is considered for the case of… More > Graphic Abstract

    Influence of Different Transition Modes on the Performances of a Hydraulic Turbine

  • Open Access

    ARTICLE

    Influence of Spray Gun Position and Orientation on Liquid Film Development along a Cylindrical Surface

    Jiuxuan Liu, Yong Zeng*, Xueya Zhao, Hongbo Chen, Bin Yan, Qian Lu

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2499-2518, 2023, DOI:10.32604/fdmp.2023.028413

    Abstract

    A method combining computational fluid dynamics (CFD) and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquid film along the surface of a cylindrical workpiece. The numerical method relies on an Eulerian-Eulerian technique. Different cylinder diameters and positions and inclinations of the spray gun are considered and useful correlations for the thickness of the liquid film and its distribution are determined using various data fitting algorithms. Finally, the reliability of the proposed method is verified by means of experimental tests where the robot posture is changed. The provided correlation are intended… More > Graphic Abstract

    Influence of Spray Gun Position and Orientation on Liquid Film Development along a Cylindrical Surface

  • Open Access

    REVIEW

    A Comprehensive Review of the Influence of Heat Exchange Tubes on Hydrodynamic, Heat, and Mass Transfer in Bubble and Slurry Bubble Columns

    Dalia S. Makki1, Hasan Sh. Majdi2, Amer A. Abdulrahman1, Abbas J. Sultan1,3,*, Zahraa W. Hasan1, Laith S. Sabri1,3, Bashar J. Kadhim1, Muthanna H. Al-Dahhan3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2613-2637, 2023, DOI:10.32604/fdmp.2023.028081

    Abstract Bubble and slurry bubble column reactors (BCRs/SBCRs) are used for various chemical, biochemical, and petrochemical applications. They have several operational and maintenance advantages, including excellent heat and mass transfer rates, simplicity, and low operating and maintenance cost. Typically, a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products. Since most applications involve complicated gas-liquid, gas-liquid-solid, and exothermic processes, the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance. In this review, past and very recent experimental and numerical investigations on such systems are critically discussed.… More >

  • Open Access

    REVIEW

    Research Progress on the Influence of Varying Fiber Contents on Mechanical Properties of Recycled Concrete

    Zhenqing Shi1, Guomin Sun1, Jianyong Pang2,*

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 239-255, 2023, DOI:10.32604/sdhm.2023.022816

    Abstract Applying recycled concrete for engineered projects not only protects the ecological environment but also improves the utilization rate of waste concrete to satisfy sustainable development requirements. However, the mechanical properties of recycled concrete are not as good as those of ordinary concrete. To enhance the former’s performance and increase its popularity and application in engineering fields, notable advances have been made by using steel, synthetic, plant, and mineral fiber materials. These materials are added to recycled concrete to improve its mechanical properties. Studies have shown that (1) steel fibers have a distinct reinforcing effect and improve the strength, toughness, and… More >

Displaying 41-50 on page 5 of 272. Per Page