Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (179)
  • Open Access

    The Effect of Rotating Magnetic Fields on the Growth of SiGe Using the Traveling Solvent Method

    T. J. Jaber1, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.3, pp. 175-190, 2006, DOI:10.3970/fdmp.2006.002.175

    Abstract The study deals with three-dimensional numerical simulations of fluid flow and heat transfer under the effect of a rotating magnetic field (RMF) during the growth of Ge0.98Si0.02 by the traveling solvent method (TSM). By using a RMF, an attempt is made to suppress buoyancy convection in the Ge0.98Si0.02 solution zone in order to get high quality and homogeneity with a flat growth interface. The full steady-state Navier-Stokes equations, as well as the energy, mass transport and continuity equations, are solved numerically using the finite element method. Different magnetic field intensities (B=2, 4, 10, 15 and 22 mT) for different rotational… More >

  • Open Access

    ARTICLE

    A likely role for the PH-domain containing protein, PEPP2/ PLEKHA5, at the membrane-microtubule cytoskeleton interface

    Yi ZOU1*, Timothy C COX2

    BIOCELL, Vol.37, No.3, pp. 55-61, 2013, DOI:10.32604/biocell.2013.37.055

    Abstract PH (pleckstrin homology) domains are well known to bind membrane phosphoinositides with different specificities and direct PH domain-containing proteins to discrete subcellular compartments with assistances of alternative binding partners. PH domain-containing proteins have been found to be involved in a wide range of cellular events, including signalling, cytoskeleton rearrangement and vesicular trafficking. Here we showed that a novel PH domain-containing protein, PEPP2 (also known as PLEKHA5), displays moderate phosphoinositide binding specificity. Full length PEPP2 was observed to variably associate with both the plasma membrane and microtubules. The membrane-associated PEPP2 nucleated at cell-cell contacts and the leading edge of migrating cells.… More >

  • Open Access

    ARTICLE

    Electroelastic Problem of Two Anti-Plane Collinear Cracks at the Interface of Two Bonded Dissimilar Piezoelectric Layers

    B. M. Singh, J. Rokne, R. S. Dhaliwal1

    Structural Durability & Health Monitoring, Vol.4, No.2, pp. 95-106, 2008, DOI:10.3970/sdhm.2008.004.095

    Abstract Under the permeable electric boundary condition the problem of two collinear anti-plane shear cracks situated at the interface of two bonded dissimilar piezoelectric layers is considered. It is assumed that applied longitudinal shear stress and electric loading at the layer surfaces are prescribed. By the use of Fourier transforms we reduce the problem to solving a set of triple integral equations with a cosine kernel. The triple integral equations are further reduced to a Fredholm integral equation of the second kind whose iterative solution has been obtained. Analytical expressions for the stress intensity factors are obtained. Numerical results are presented… More >

  • Open Access

    ARTICLE

    Numerical Evaluation of T-stress Solutions for Cracks in Plane Anisotropic Bodies

    P.D. Shah1, Ch. Song2, C.L. Tan1, X. Wang1

    Structural Durability & Health Monitoring, Vol.2, No.4, pp. 225-238, 2006, DOI:10.3970/sdhm.2006.002.225

    Abstract Numerical T-stress solutions in two dimensional anisotropic cracked bodies are very scarce in the literature. Schemes to evaluate this fracture parameter in anisotropy have been reported only fairly recently. Among them are those developed in conjunction with two different computational techniques, namely, the Boundary Element Method (BEM) and the Scaled Boundary Finite-Element Method (SBFEM). This paper provides a review of the respective schemes using these techniques and demonstrates their efficacy with three examples. These examples, which are of engineering importance, involve cracks lying in a homogeneous medium as well as at the interface between dissimilar media. The numerical T-stress solutions… More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Fatigue Crack Growth in Curved-Welded Joints Using Interface Elements

    M. S. Alam1, M.A. Wahab1,2

    Structural Durability & Health Monitoring, Vol.1, No.3, pp. 171-184, 2005, DOI:10.3970/sdhm.2005.001.171

    Abstract Fatigue life of curved structural joints in ship structures under constant amplitude cyclic loading has been studied in this research. A new approach for the simulation of fatigue crack growth in welded joints has been developed and the concept has been applied to welded curved butt-joints. The phenomena of crack propagation and interface debonding can be regarded as the formation of new surfaces. Thus, it is possible to model these problems by introducing the mechanism of surface formation. In the proposed method, the formation of new surface is represented by interface element based on the interface surface potential energy. The… More >

  • Open Access

    ARTICLE

    A Spring-Layer Model for a Bi-Layered Plate-Strip with Initial Stress Through Imperfect Contact Interface

    Ahmet Daşdemir*

    Sound & Vibration, Vol.53, No.3, pp. 65-74, 2019, DOI:10.32604/sv.2019.04087

    Abstract In this paper, we present our report on the forced vibration of a bi-layered plate-strip with initial stress resting on a rigid foundation induced by a time-harmonic force. The investigation is carried out according to the piecewise homogeneous body model with utilizing the three-dimensional linearized theory of elastic waves in initially stressed bodies (TLTEWISB). The materials of the body are chosen to be linearly elastic, homogeneous, and isotropic. The interface between the layers is assumed to be imperfect, and is simulated by the spring-layer model. A similar degree of imperfection on the interface is realized in the normal and tangential… More >

  • Open Access

    ARTICLE

    Interfacial Strength of Cement Lines in Human Cortical Bone

    X. Neil Dong1,2, Xiaohui Zhang1, X. Edward Guo1

    Molecular & Cellular Biomechanics, Vol.2, No.2, pp. 63-68, 2005, DOI:10.3970/mcb.2005.002.063

    Abstract In human cortical bone, cement lines (or reversal lines) separate osteons from the interstitial bone tissue, which consists of remnants of primary lamellar bone or fragments of remodeled osteons. There have been experimental evidences of the cement line involvement in the failure process of bone such as fatigue and damage. However, there are almost no experimental data on interfacial properties of cement lines in human cortical bone. The objective of this study is to design and assemble a precision and computer controlled osteon pushout microtesting system, and to experimentally determine the interfacial strength of cement lines in human cortical bone… More >

  • Open Access

    ARTICLE

    Shear Force at the Cell-Matrix Interface: Enhanced Analysis for Microfabricated Post Array Detectors

    Christopher A. Lemmon1,2, Nathan J. Sniadecki3, Sami Alom Ruiz1,3, John L. Tan, Lewis H. Romer2,4,5, Christopher S. Chen3,4

    Molecular & Cellular Biomechanics, Vol.2, No.1, pp. 1-16, 2005, DOI:10.3970/mcb.2005.002.001

    Abstract The interplay of mechanical forces between the extracellular environment and the cytoskeleton drives development, repair, and senescence in many tissues. Quantitative definition of these forces is a vital step in understanding cellular mechanosensing. Microfabricated post array detectors (mPADs) provide direct measurements of cell-generated forces during cell adhesion to extracellular matrix. A new approach to mPAD post labeling, volumetric imaging, and an analysis of post bending mechanics determined that cells apply shear forces and not point moments at the matrix interface. In addition, these forces could be accurately resolved from post deflections by using images of post tops and bases. Image… More >

  • Open Access

    ARTICLE

    Forced Dissociation of the Strand Dimer Interface between C-Cadherin Ectodomains

    M.V. Bayas1,1, K.Schulten2,2, D. Leckb,3,3

    Molecular & Cellular Biomechanics, Vol.1, No.2, pp. 101-112, 2004, DOI:10.3970/mcb.2004.001.101

    Abstract The force-induced dissociation of the strand dimer interface in C-cadherin has been studied using steered molecular dynamics simulations. The dissociation occurred, without domain unraveling, after the extraction of the conserved trypthophans (Trp2) from their respective hydrophobic pockets. The simulations revealed two stable positions for the Trp2 side chain inside the pocket. The most internal stable position involved a hydrogen bond between the ring Ne of Trp2 and the backbone carbonyl of Glu90. In the second stable position, the aromatic ring is located at the pocket entrance. After extracting the two tryptophans from their pockets, the complex exists in an intermediate… More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Thin Layers

    Dan Givoli1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 497-514, 2004, DOI:10.3970/cmes.2004.005.497

    Abstract Very thin layers with material properties which significantly differ from those of the surrounding medium appear in a variety of applications. Traditionally there are two extreme ways of handling such layers in finite element analysis: either they are fully modelled or they are totally ignored. The former option is often very expensive computationally, while the latter may lead to significant inaccuracies. Here a special technique of modeling thin layers is devised within the framework of the finite element method. This technique constitutes a prudent compromise between the two extremes mentioned above. The layer is replaced by an interface, namely a… More >

Displaying 71-80 on page 8 of 179. Per Page