Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (533)
  • Open Access

    ARTICLE

    A Coupled Mathematical Model of Cell Migration, Vessel Cooption and Tumour Microenvironment during the Initiation of Micrometastases

    Yan Cai1,2,3, Jie Wu4, Zhiyong Li1,2

    Molecular & Cellular Biomechanics, Vol.12, No.4, pp. 231-248, 2015, DOI:10.3970/mcb.2015.012.231

    Abstract We propose a coupled mathematical model for the detailed quantitative analyses of initial microtumour and micrometastases formation by including cancer cell migration, host vessel cooption and changes in microenvironment. Migrating cells are included as a new phenotype to describe the migration behaviour of malignant tumour cells. Migration probability of a migrating cell is assumed to be influenced by local chemical microenvironment. Pre-existing vessel cooption and remodelling are introduced according to the local haemodynamical microenvironment, such as interstitial pressure and vessel wall permeability. After the tumour cells and tumour vessels distribution are updated, the chemical substances are coupled calculated with the… More >

  • Open Access

    ARTICLE

    Differential Orientation of 10T1/2 Mesenchymal Cells on Non-Uniform Stretch Environments

    WJ Richardson, DD van der Voort, E Wilson, JE Moore Jr.∗,‡

    Molecular & Cellular Biomechanics, Vol.10, No.3, pp. 245-265, 2013, DOI:10.3970/mcb.2013.010.245

    Abstract Non-uniform stress and strain fields are prevalent in many tissues in vivo, and often exacerbated by disease or injury. These mechanical gradients potentially play a role in contributing to pathological conditions, presenting a need for experimental tools to allow investigation of cell behavior within non-uniformly stimulated environments. Herein, we employ two in vitro cell-stretching devices (one previously published; one newly presented) capable of subjecting cells to cyclic, non-uniform stretches upon the surface of either a circular elastomeric membrane or a cylindrical PDMS tube. After 24 hours of cyclic stretch, 10T1/2 cells on both devices showed marked changes in long-axis orientation,… More >

  • Open Access

    ARTICLE

    3D Numerical Study of Tumor Microenvironmental Flow in Response to Vascular-Disrupting Treatments

    Jie Wu∗,†, Yan Cai, Shixiong Xu§, Quan Long, Zurong Ding*, Cheng Dong∗,||

    Molecular & Cellular Biomechanics, Vol.9, No.2, pp. 95-126, 2012, DOI:10.3970/mcb.2012.009.095

    Abstract The effects of vascular-disrupting treatments on normalization of tumor microvasculature and its microenvironmental flow were investigated, by mathematical modeling and numerical simulation of tumor vascular-disrupting and tumor haemodynamics. Four disrupting approaches were designed according to the abnormal characteristics of tumor microvasculature compared with the normal one. The results predict that the vascular-disrupting therapies could improve tumor microenvironment, eliminate drug barrier and inhibit metastasis of tumor cells to some extent. Disrupting certain types of vessels may get better effects. In this study, the flow condition on the networks with "vascular-disrupting according to flowrate" is the best comparing with the other three… More >

  • Open Access

    ARTICLE

    Osmotic Loading of in Situ Chondrocytes in Their Native Environment

    Rami K Korhonen∗,†, Sang-Kuy Han, Walter Herzog

    Molecular & Cellular Biomechanics, Vol.7, No.3, pp. 125-134, 2010, DOI:10.3970/mcb.2010.007.125

    Abstract Changes in the osmotic environment cause changes in volume of isolated cells and cells in tissue explants, and the osmotic environment becomes hypotonic in cartilage diseases such as osteoarthritis (OA). However, it is not known how cells respond to a hypotonic osmotic challenge when situated in the fully intact articular cartilage.
    A confocal laser scanning microscope was used to image chondrocytes of intact rabbit patellae in an isotonic (300 mOsm) and hypotonic (172 mOsm) immersion medium. Cell volumes were calculated before and 5, 15, 60, 120 and 240 minutes after the change in saline concentration. Local tissue strains and swelling… More >

  • Open Access

    ARTICLE

    Tumor Cell Extravasation Mediated by Leukocyte Adhesion is Shear Rate Dependent on IL-8 Signaling*

    Shile Liang, Meghan Hoskins, Cheng Dong

    Molecular & Cellular Biomechanics, Vol.7, No.2, pp. 77-91, 2010, DOI:10.3970/mcb.2010.007.077

    Abstract To complete the metastatic journey, cancer cells have to disseminate through the circulation and extravasate to distal organs. However, the extravasation process, by which tumor cells leave a blood vessel and invade the surrounding tissue from the microcirculation, remains poorly understood at the molecular level. In this study, tumor cell adhesion to the endothelium (EC) and subsequent extravasation were investigated under various flow conditions. Results have shown polymorphonuclear neutrophils (PMNs) facilitate melanoma cell adhesion to the EC and subsequent extravasation by a shear-rate dependent mechanism. Melanoma cell-PMN interactions are mediated by the binding between intercellular adhesion molecule-1 (ICAM-1) on melanoma… More >

  • Open Access

    ARTICLE

    Adhesive Models to Understand the Sensitivity of Bio-Molecules to Environmental Signals

    Shaohua Chen*

    Molecular & Cellular Biomechanics, Vol.5, No.2, pp. 97-106, 2008, DOI:10.3970/mcb.2008.005.097

    Abstract Recently, contact mechanics has been widely used to get some understanding of the biological adhesion mechanisms, such as cell-cell adhesion, insects' adhesion and locomotion. JKR theory is usually adopted as a basis, in which the interaction of molecules is considered in contrast to the classical Hertz solution. In this paper, two problems are summarized, which may give some insights to cells or bio-molecules sensitivity to environmental signals: (1) cell reorientation on a stretched substrate; (2) spontaneous detachment between cells or bio-molecules under the variation of environmental signals. The intention here is only to illustrate the possibilities that contact mechanics may… More >

  • Open Access

    ARTICLE

    Fuzzy Search for Multiple Chinese Keywords in Cloud Environment

    Zhongjin Fang1, 2, Jinwei Wang1, *, Baowei Wang1, Jianjun Zhang3, Yunqing Shi4

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 351-363, 2019, DOI:10.32604/cmc.2019.07106

    Abstract With the continuous development of cloud computing and big data technology, the use of cloud storage is more and more extensive, and a large amount of data is outsourced for public cloud servers, and the security problems that follow are gradually emerging. It can not only protect the data privacy of users, but also realize efficient retrieval and use of data, which is an urgent problem for cloud storage. Based on the existing fuzzy search and encrypted data fuzzy search schemes, this paper uses the characteristics of fuzzy sounds and polysemy that are unique to Chinese, and realizes the synonym… More >

  • Open Access

    ARTICLE

    Knowledge Composition and Its Influence on New Product Development Performance in the Big Data Environment

    Chuanrong Wu1,*, Veronika Lee1, Mark E. McMurtrey2

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 365-378, 2019, DOI:10.32604/cmc.2019.06949

    Abstract Product innovation is regarded as a primary means for enterprises to maintain their competitive advantage. Knowledge transfer is a major way that enterprises access knowledge from the external environment for new product innovation. Knowledge transfer may face the risk of infringement of the intellectual property rights of other enterprises and the termination of licensing agreements by the knowledge source. Enterprises must develop independent innovation knowledge at the same time they profit from knowledge transfers. Therefore, new product development by an enterprise usually consists of three types of new knowledge: big data knowledge transferred from big data knowledge providers, private knowledge… More >

  • Open Access

    ARTICLE

    Analysis and Improvement of Steganography Protocol Based on Bell States in Noise Environment

    Zhiguo Qu1,*, Shengyao Wu2, Wenjie Liu1, Xiaojun Wang3

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 607-624, 2019, DOI:10.32604/cmc.2019.02656

    Abstract In the field of quantum communication, quantum steganography is an important branch of quantum information hiding. In a realistic quantum communication system, quantum noises are unavoidable and will seriously impact the safety and reliability of the quantum steganographic system. Therefore, it is very important to analyze the influence of noise on the quantum steganography protocol and how to reduce the effect of noise. This paper takes the quantum steganography protocol proposed in 2010 as an example to analyze the effects of noises on information qubits and secret message qubits in the four primary quantum noise environments. The results show that… More >

  • Open Access

    ARTICLE

    Waste Tire Rubberized Concrete Plates for Airport Pavements: Stress and Strain Profiles in Time and Space Domains

    E. Ferretti1

    CMC-Computers, Materials & Continua, Vol.31, No.2, pp. 87-112, 2012, DOI:10.3970/cmc.2012.031.087

    Abstract The present study follows a previous study on the stress and strain profiles along the cross-section of waste tire rubberized concrete plates for airport pavements, subjected to quasi-static loads [Ferretti and Bignozzi (2012)]. Further results on the in-situ performance of concrete plain and rubberized taxiways have been collected and presented here. The experimental program has been undertaken at the Guglielmo Marconi airport of Bologna (Italy). It concerns two portions of the taxiway, one built with plain concrete and one with rubberized concrete. Each portion has been fitted with strain gauges embedded in concrete for the acquisition of vertical strains. More >

Displaying 501-510 on page 51 of 533. Per Page