Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    UltraSegNet: A Hybrid Deep Learning Framework for Enhanced Breast Cancer Segmentation and Classification on Ultrasound Images

    Suhaila Abuowaida1,*, Hamza Abu Owida2, Deema Mohammed Alsekait3,*, Nawaf Alshdaifat4, Diaa Salama AbdElminaam5,6, Mohammad Alshinwan4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3303-3333, 2025, DOI:10.32604/cmc.2025.063470 - 16 April 2025

    Abstract Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise, dependency on the operator, and the variation of image quality. This paper presents the UltraSegNet architecture that addresses these challenges through three key technical innovations: This work adds three things: (1) a changed ResNet-50 backbone with sequential 3 convolutions to keep fine anatomical details that are needed for finding lesion boundaries; (2) a computationally efficient regional attention mechanism that works on high-resolution features without using a transformer’s extra memory; and (3) an adaptive feature fusion strategy that changes local and… More >

  • Open Access

    ARTICLE

    A Deep Learning Framework for Arabic Cyberbullying Detection in Social Networks

    Yahya Tashtoush1,*, Areen Banysalim1, Majdi Maabreh2, Shorouq Al-Eidi3, Ola Karajeh4, Plamen Zahariev5

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3113-3134, 2025, DOI:10.32604/cmc.2025.062724 - 16 April 2025

    Abstract Social media has emerged as one of the most transformative developments on the internet, revolutionizing the way people communicate and interact. However, alongside its benefits, social media has also given rise to significant challenges, one of the most pressing being cyberbullying. This issue has become a major concern in modern society, particularly due to its profound negative impacts on the mental health and well-being of its victims. In the Arab world, where social media usage is exceptionally high, cyberbullying has become increasingly prevalent, necessitating urgent attention. Early detection of harmful online behavior is critical to… More >

  • Open Access

    ARTICLE

    Integration of Federated Learning and Graph Convolutional Networks for Movie Recommendation Systems

    Sony Peng1, Sophort Siet1, Ilkhomjon Sadriddinov1, Dae-Young Kim2,*, Kyuwon Park3,*, Doo-Soon Park2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2041-2057, 2025, DOI:10.32604/cmc.2025.061166 - 16 April 2025

    Abstract Recommendation systems (RSs) are crucial in personalizing user experiences in digital environments by suggesting relevant content or items. Collaborative filtering (CF) is a widely used personalization technique that leverages user-item interactions to generate recommendations. However, it struggles with challenges like the cold-start problem, scalability issues, and data sparsity. To address these limitations, we develop a Graph Convolutional Networks (GCNs) model that captures the complex network of interactions between users and items, identifying subtle patterns that traditional methods may overlook. We integrate this GCNs model into a federated learning (FL) framework, enabling the model to learn… More >

  • Open Access

    ARTICLE

    Privacy-Aware Federated Learning Framework for IoT Security Using Chameleon Swarm Optimization and Self-Attentive Variational Autoencoder

    Saad Alahmari1,*, Abdulwhab Alkharashi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 849-873, 2025, DOI:10.32604/cmes.2025.062549 - 11 April 2025

    Abstract The Internet of Things (IoT) is emerging as an innovative phenomenon concerned with the development of numerous vital applications. With the development of IoT devices, huge amounts of information, including users’ private data, are generated. IoT systems face major security and data privacy challenges owing to their integral features such as scalability, resource constraints, and heterogeneity. These challenges are intensified by the fact that IoT technology frequently gathers and conveys complex data, creating an attractive opportunity for cyberattacks. To address these challenges, artificial intelligence (AI) techniques, such as machine learning (ML) and deep learning (DL),… More >

  • Open Access

    ARTICLE

    MediServe: An IoT-Enhanced Deep Learning Framework for Personalized Medication Management for Elderly Care

    Smita Kapse1, Ganesh Yenurkar1,*, Vincent Omollo Nyangaresi2,3,*, Gunjan Balpande1, Shravani Kale1, Manthan Jadhav1, Sahil Lawankar1, Vikrant Jaunjale1

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 935-976, 2025, DOI:10.32604/cmc.2025.061981 - 26 March 2025

    Abstract In today’s fast-paced world, many elderly individuals struggle to adhere to their medication schedules, especially those with memory-related conditions like Alzheimer’s disease, leading to serious health risks, hospitalizations, and increased healthcare costs. Traditional reminder systems often fail due to a lack of personalization and real-time intervention. To address this critical challenge, we introduce MediServe, an advanced IoT-enabled medication management system that seamlessly integrates deep learning techniques to provide a personalized, secure, and adaptive solution. MediServe features a smart medication box equipped with biometric authentication, such as fingerprint recognition, ensuring authorized access to prescribed medication while… More >

  • Open Access

    ARTICLE

    GACL-Net: Hybrid Deep Learning Framework for Accurate Motor Imagery Classification in Stroke Rehabilitation

    Chayut Bunterngchit1, Laith H. Baniata2, Mohammad H. Baniata3, Ashraf ALDabbas4, Mohannad A. Khair5, Thanaphon Chearanai6, Sangwoo Kang2,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 517-536, 2025, DOI:10.32604/cmc.2025.060368 - 26 March 2025

    Abstract Stroke is a leading cause of death and disability worldwide, significantly impairing motor and cognitive functions. Effective rehabilitation is often hindered by the heterogeneity of stroke lesions, variability in recovery patterns, and the complexity of electroencephalography (EEG) signals, which are often contaminated by artifacts. Accurate classification of motor imagery (MI) tasks, involving the mental simulation of movements, is crucial for assessing rehabilitation strategies but is challenged by overlapping neural signatures and patient-specific variability. To address these challenges, this study introduces a graph-attentive convolutional long short-term memory (LSTM) network (GACL-Net), a novel hybrid deep learning model… More >

  • Open Access

    ARTICLE

    An Enhanced Task Migration Technique Based on Convolutional Neural Network in Machine Learning Framework

    Hamayun Khan1,*, Muhammad Atif Imtiaz2, Hira Siddique3, Muhammad Tausif Afzal Rana4, Arshad Ali5, Muhammad Zeeshan Baig6, Saif ur Rehman7, Yazed Alsaawy5

    Computer Systems Science and Engineering, Vol.49, pp. 317-331, 2025, DOI:10.32604/csse.2025.061118 - 19 March 2025

    Abstract The migration of tasks aided by machine learning (ML) predictions IN (DPM) is a system-level design technique that is used to reduce energy by enhancing the overall performance of the processor. In this paper, we address the issue of system-level higher task dissipation during the execution of parallel workloads with common deadlines by introducing a machine learning-based framework that includes task migration using energy-efficient earliest deadline first scheduling (EA-EDF). ML-based EA-EDF enhances the overall throughput and optimizes the energy to avoid delay and performance degradation in a multiprocessor system. The proposed system model allocates processors… More >

  • Open Access

    ARTICLE

    A Hybrid Transfer Learning Framework for Enhanced Oil Production Time Series Forecasting

    Dalal AL-Alimi1, Mohammed A. A. Al-qaness2,3,*, Robertas Damaševičius4,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3539-3561, 2025, DOI:10.32604/cmc.2025.059869 - 17 February 2025

    Abstract Accurate forecasting of oil production is essential for optimizing resource management and minimizing operational risks in the energy sector. Traditional time-series forecasting techniques, despite their widespread application, often encounter difficulties in handling the complexities of oil production data, which is characterized by non-linear patterns, skewed distributions, and the presence of outliers. To overcome these limitations, deep learning methods have emerged as more robust alternatives. However, while deep neural networks offer improved accuracy, they demand substantial amounts of data for effective training. Conversely, shallow networks with fewer layers lack the capacity to model complex data distributions… More >

  • Open Access

    ARTICLE

    ResMHA-Net: Enhancing Glioma Segmentation and Survival Prediction Using a Novel Deep Learning Framework

    Novsheena Rasool1,*, Javaid Iqbal Bhat1, Najib Ben Aoun2,3, Abdullah Alharthi4, Niyaz Ahmad Wani5, Vikram Chopra6, Muhammad Shahid Anwar7,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 885-909, 2024, DOI:10.32604/cmc.2024.055900 - 15 October 2024

    Abstract Gliomas are aggressive brain tumors known for their heterogeneity, unclear borders, and diverse locations on Magnetic Resonance Imaging (MRI) scans. These factors present significant challenges for MRI-based segmentation, a crucial step for effective treatment planning and monitoring of glioma progression. This study proposes a novel deep learning framework, ResNet Multi-Head Attention U-Net (ResMHA-Net), to address these challenges and enhance glioma segmentation accuracy. ResMHA-Net leverages the strengths of both residual blocks from the ResNet architecture and multi-head attention mechanisms. This powerful combination empowers the network to prioritize informative regions within the 3D MRI data and capture… More >

  • Open Access

    ARTICLE

    Leveraging EfficientNetB3 in a Deep Learning Framework for High-Accuracy MRI Tumor Classification

    Mahesh Thyluru Ramakrishna1, Kuppusamy Pothanaicker2, Padma Selvaraj3, Surbhi Bhatia Khan4,7,*, Vinoth Kumar Venkatesan5, Saeed Alzahrani6, Mohammad Alojail6

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 867-883, 2024, DOI:10.32604/cmc.2024.053563 - 15 October 2024

    Abstract Brain tumor is a global issue due to which several people suffer, and its early diagnosis can help in the treatment in a more efficient manner. Identifying different types of brain tumors, including gliomas, meningiomas, pituitary tumors, as well as confirming the absence of tumors, poses a significant challenge using MRI images. Current approaches predominantly rely on traditional machine learning and basic deep learning methods for image classification. These methods often rely on manual feature extraction and basic convolutional neural networks (CNNs). The limitations include inadequate accuracy, poor generalization of new data, and limited ability… More >

Displaying 1-10 on page 1 of 43. Per Page