Yiqiao Gong1,2, Chunlai Wu1, Wenfeng Zheng1,*, Siyu Lu3, Guangyu Xu4, Lijuan Zhang5, Lirong Yin6,*
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2223-2252, 2025, DOI:10.32604/cmes.2025.072136
- 26 November 2025
Abstract Recent Super-Resolution (SR) algorithms often suffer from excessive model complexity, high computational costs, and limited flexibility across varying image scales. To address these challenges, we propose DDNet, a dynamic and lightweight SR framework designed for arbitrary scaling factors. DDNet integrates a residual learning structure with an Adaptively fusion Feature Block (AFB) and a scale-aware upsampling module, effectively reducing parameter overhead while preserving reconstruction quality. Additionally, we introduce DDNetGAN, an enhanced variant that leverages a relativistic Generative Adversarial Network (GAN) to further improve texture realism. To validate the proposed models, we conduct extensive training using the More >