Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (99)
  • Open Access

    ARTICLE

    Design of a Lightweight Compressed Video Stream-Based Patient Activity Monitoring System

    Sangeeta Yadav1, Preeti Gulia1,*, Nasib Singh Gill1,*, Piyush Kumar Shukla2, Arfat Ahmad Khan3, Sultan Alharby4, Ahmed Alhussen4, Mohd Anul Haq5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1253-1274, 2024, DOI:10.32604/cmc.2023.042869

    Abstract Inpatient falls from beds in hospitals are a common problem. Such falls may result in severe injuries. This problem can be addressed by continuous monitoring of patients using cameras. Recent advancements in deep learning-based video analytics have made this task of fall detection more effective and efficient. Along with fall detection, monitoring of different activities of the patients is also of significant concern to assess the improvement in their health. High computation-intensive models are required to monitor every action of the patient precisely. This requirement limits the applicability of such networks. Hence, to keep the model lightweight, the already designed… More >

  • Open Access

    ARTICLE

    Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device

    Yanhui Zhang1, Lianhua Ma1, Hailiang Su1,2,3,*, Jirong Qin2, Zhining Chen2, Kaibiao Deng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1961-1980, 2024, DOI:10.32604/cmes.2023.045570

    Abstract In this paper, to present a lightweight-developed front underrun protection device (FUPD) for heavy-duty trucks, plain weave carbon fiber reinforced plastic (CFRP) is used instead of the original high-strength steel. First, the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective. For studying the design capability of carbon fiber composite materials, we investigate the effects of TC-33 carbon fiber diameter (D), fiber yarn width (W) and height (H), and fiber yarn density (N) on the front underrun protective beam of carbon fiber composite materials. Based on the investigation, a material-structure matching… More >

  • Open Access

    ARTICLE

    RLAT: Lightweight Transformer for High-Resolution Range Profile Sequence Recognition

    Xiaodan Wang*, Peng Wang, Yafei Song, Qian Xiang, Jingtai Li

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 217-246, 2024, DOI:10.32604/csse.2023.039846

    Abstract High-resolution range profile (HRRP) automatic recognition has been widely applied to military and civilian domains. Present HRRP recognition methods have difficulty extracting deep and global information about the HRRP sequence, which performs poorly in real scenes due to the ambient noise, variant targets, and limited data. Moreover, most existing methods improve the recognition performance by stacking a large number of modules, but ignore the lightweight of methods, resulting in over-parameterization and complex computational effort, which will be challenging to meet the deployment and application on edge devices. To tackle the above problems, this paper proposes an HRRP sequence recognition method… More >

  • Open Access

    ARTICLE

    A Lightweight Deep Learning-Based Model for Tomato Leaf Disease Classification

    Naeem Ullah1, Javed Ali Khan2,*, Sultan Almakdi3, Mohammed S. Alshehri3, Mimonah Al Qathrady4, Eman Abdullah Aldakheel5,*, Doaa Sami Khafaga5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3969-3992, 2023, DOI:10.32604/cmc.2023.041819

    Abstract Tomato leaf diseases significantly impact crop production, necessitating early detection for sustainable farming. Deep Learning (DL) has recently shown excellent results in identifying and classifying tomato leaf diseases. However, current DL methods often require substantial computational resources, hindering their application on resource-constrained devices. We propose the Deep Tomato Detection Network (DTomatoDNet), a lightweight DL-based framework comprising 19 learnable layers for efficient tomato leaf disease classification to overcome this. The Convn kernels used in the proposed (DTomatoDNet) framework is 1 × 1, which reduces the number of parameters and helps in more detailed and descriptive feature extraction for classification. The proposed DTomatoDNet model… More >

  • Open Access

    ARTICLE

    Web Layout Design of Large Cavity Structures Based on Topology Optimization

    Xiaoqiao Yang, Jialiang Sun*, Dongping Jin

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2665-2689, 2024, DOI:10.32604/cmes.2023.031482

    Abstract Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades and wings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumption has become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topology optimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By using the variable density method, lightweight design is achieved without compromising structural strength. The optimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivity filtering and projection to obtain a robust optimized configuration. The mechanical properties are… More >

  • Open Access

    ARTICLE

    Lightweight Multi-Resolution Network for Human Pose Estimation

    Pengxin Li1, Rong Wang1,2,*, Wenjing Zhang1, Yinuo Liu1, Chenyue Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2239-2255, 2024, DOI:10.32604/cmes.2023.030677

    Abstract Human pose estimation aims to localize the body joints from image or video data. With the development of deep learning, pose estimation has become a hot research topic in the field of computer vision. In recent years, human pose estimation has achieved great success in multiple fields such as animation and sports. However, to obtain accurate positioning results, existing methods may suffer from large model sizes, a high number of parameters, and increased complexity, leading to high computing costs. In this paper, we propose a new lightweight feature encoder to construct a high-resolution network that reduces the number of parameters… More >

  • Open Access

    ARTICLE

    A Lightweight Road Scene Semantic Segmentation Algorithm

    Jiansheng Peng1,2,*, Qing Yang1, Yaru Hou1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1929-1948, 2023, DOI:10.32604/cmc.2023.043524

    Abstract In recent years, with the continuous deepening of smart city construction, there have been significant changes and improvements in the field of intelligent transportation. The semantic segmentation of road scenes has important practical significance in the fields of automatic driving, transportation planning, and intelligent transportation systems. However, the current mainstream lightweight semantic segmentation models in road scene segmentation face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation edges. Therefore, this article proposes a lightweight semantic segmentation model based on the LiteSeg model improvement to address these issues. The model uses the lightweight backbone network… More >

  • Open Access

    ARTICLE

    BLECA: A Blockchain-Based Lightweight and Efficient Cross-Domain Authentication Scheme for Smart Parks

    Fengting Luo, Ruwei Huang*, Yuyue Chen

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1815-1835, 2023, DOI:10.32604/cmc.2023.041676

    Abstract Smart parks serve as integral components of smart cities, where they play a pivotal role in the process of urban modernization. The demand for cross-domain cooperation among smart devices from various parks has witnessed a significant increase. To ensure secure communication, device identities must undergo authentication. The existing cross-domain authentication schemes face issues such as complex authentication paths and high certificate management costs for devices, making it impractical for resource-constrained devices. This paper proposes a blockchain-based lightweight and efficient cross-domain authentication protocol for smart parks, which simplifies the authentication interaction and requires every device to maintain only one certificate. To… More >

  • Open Access

    ARTICLE

    Enhancing IoT Data Security with Lightweight Blockchain and Okamoto Uchiyama Homomorphic Encryption

    Mohanad A. Mohammed*, Hala B. Abdul Wahab

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1731-1748, 2024, DOI:10.32604/cmes.2023.030528

    Abstract Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges. Concurrently, the Internet of Things (IoT) has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services, ultimately enhancing human lives. This paper presents a new approach utilizing lightweight blockchain technology, effectively reducing the computational burden typically associated with conventional blockchain systems. By integrating this lightweight blockchain with IoT systems, substantial reductions in implementation time and computational complexity can be achieved. Moreover, the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm, renowned for… More >

  • Open Access

    ARTICLE

    Dense Spatial-Temporal Graph Convolutional Network Based on Lightweight OpenPose for Detecting Falls

    Xiaorui Zhang1,2,3,*, Qijian Xie1, Wei Sun3,4, Yongjun Ren1,2,3, Mithun Mukherjee5

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 47-61, 2023, DOI:10.32604/cmc.2023.042561

    Abstract Fall behavior is closely related to high mortality in the elderly, so fall detection becomes an important and urgent research area. However, the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy. To solve the above problems, this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose. Lightweight OpenPose uses MobileNet as a feature extraction network, and the prediction layer uses bottleneck-asymmetric structure, thus reducing the amount of the network. The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by… More >

Displaying 11-20 on page 2 of 99. Per Page