Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,962)
  • Open Access

    ARTICLE

    Biological Tissue Growth in a Double-Scaffold Configuration

    Marcello Lappa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 141-152, 2006, DOI:10.3970/fdmp.2006.002.141

    Abstract Numerical simulations and computer-graphics animation can be used as useful tools to discern the physicochemical environmental factors affecting the surface kinetics of growing biological tissues as well as their relative importance in determining growth. A mathematical formalism for such kinetics is proposed through parametric investigation and validated through focused comparison with experimental results. The study relies on the application of a CFD moving boundary (Volume of Fluid) method specially conceived for the simulation of these problems. In the second part of the analysis the case of two samples hydrodynamically interacting in a rotating bioreactor is considered. The interplay between two… More >

  • Open Access

    ARTICLE

    Influence of Thermocapillary Convection on Solid-liquid Interface

    K. Matsunaga1, H. Kawamura1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 59-64, 2006, DOI:10.3970/fdmp.2006.002.059

    Abstract Existing studies on solidification phenomena mainly focused on the solidification processes per se. In real systems, however, one cannot neglect the effects of molten material convective flow, such as natural and thermocapillary convection (they strongly affect the resulting quality of the solidified materials). The present study aims to experimentally investigate on the effect of the thermocapillary flow upon the directional solidification in a liquid layer with a free upper surface. If no free surface exists, the solid--liquid interface (SLI) is vertical and straight, while, with the free surface, the SLI is inclined against the wall-normal direction and is curved in… More >

  • Open Access

    ARTICLE

    How Does Buoyancy-driven Convection Affect Biological Macromolecular Crystallization? An Analysis of Microgravity and Hypergravity Effects by Means of Magnetic Field Gradients

    N.I. Wakayama1, D.C. Yin2, J.W. Qi3

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.2, pp. 153-170, 2005, DOI:10.3970/fdmp.2005.001.153

    Abstract The production of crystals of adequate size and high quality is the "bottleneck'' for three-dimensional structure analysis of protein crystals. In this work, in order to shed additional light on the (still controversial) beneficial effect of microgravity on crystal growth, we focus on recent advanced experimental and theoretical research about the effects of buoyancy-driven convection on protein crystallization. In the light of the numerical studies the following major outcomes can be highlighted: (1) when the crystal size exceeds several dozens of µm, buoyancy-driven convection dominates solute transport near the growing crystal and the crystal growth rate becomes larger than that… More >

  • Open Access

    ARTICLE

    Process-dependent Thermal-Mechanical Behaviors of an Advanced Thin-Flip-Chip-on-Flex Interconnect Technology with Anisotropic Conductive Film Joints

    Hsien-Chie Cheng1,2, Chien-Hao Ma1, Ching-Feng Yu3, Su-Tsai Lu4, Wen-Hwa Chen2,3

    CMC-Computers, Materials & Continua, Vol.38, No.3, pp. 129-154, 2013, DOI:10.3970/cmc.2013.038.129

    Abstract User experiences for electronic devices with high portability and flexibility, good intuitive human interfaces and low cost have driven the development of semiconductor technology toward flexible electronics and display. In this study proposes, an advanced flexible interconnect technology is proposed for flexible electronics, in which an ultra-thin IC chip having a great number of micro-bumps is bonded onto a very thin flex substrate using an epoxy-based anisotropic conductive film (ACF) to form fine-pitch and reliable interconnects or joints (herein termed ACF-typed thin-flip-chip-on-flex (TFCOF) technology). The electrical and thermal -mechanical performances of the micro-joints are the key to the feasibility and… More >

  • Open Access

    ARTICLE

    Effects of Transverse Shear on Strain Stiffening of Biological Fiber Networks

    H. Jiang1,2, B. Yang1, S. Liu3

    CMC-Computers, Materials & Continua, Vol.38, No.2, pp. 61-77, 2013, DOI:10.3970/cmc.2013.038.061

    Abstract Actin, fibrin and collagen fiber networks are typical hierarchical biological materials formed by bundling fibrils into fibers and branching/adjoining fibers into networks. The bundled fibrils interact with each other through weak van der Waals forces and, in some cases, additional spotted covalent crosslinks. In the present work, we apply Timoshenko's beam theory that takes into account the effect of transverse shear between fibrils in each bundle to study the overall mechanical behaviors of such fiber networks. Previous experimental studies suggested that these fibers are initially loose bundles. Based on the evidence, it is hypothesized that the fibers undergo transitions from… More >

  • Open Access

    ARTICLE

    Flexural-Torsional Buckling and Vibration Analysis of Composite Beams

    E.J. Sapountzakis1, G.C. Tsiatas2

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 103-116, 2007, DOI:10.3970/cmc.2007.006.103

    Abstract In this paper the general flexural-torsional buckling and vibration problems of composite Euler-Bernoulli beams of arbitrarily shaped cross section are solved using a boundary element method. The general character of the proposed method is verified from the formulation of all basic equations with respect to an arbitrary coordinate system, which is not restricted to the principal one. The composite beam consists of materials in contact each of which can surround a finite number of inclusions. It is subjected to a compressive centrally applied load together with arbitrarily transverse and/or torsional distributed or concentrated loading, while its edges are restrained by… More >

  • Open Access

    ARTICLE

    Uncertain Knowledge Reasoning Based on the Fuzzy Multi Entity Bayesian Networks

    Dun Li1, Hong Wu1, Jinzhu Gao2, Zhuoyun Liu1, Lun Li1, Zhiyun Zheng1,*

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 301-321, 2019, DOI:10.32604/cmc.2019.05953

    Abstract With the rapid development of the semantic web and the ever-growing size of uncertain data, representing and reasoning uncertain information has become a great challenge for the semantic web application developers. In this paper, we present a novel reasoning framework based on the representation of fuzzy PR-OWL. Firstly, the paper gives an overview of the previous research work on uncertainty knowledge representation and reasoning, incorporates Ontology into the fuzzy Multi Entity Bayesian Networks theory, and introduces fuzzy PR-OWL, an Ontology language based on OWL2. Fuzzy PR-OWL describes fuzzy semantics and uncertain relations and gives grammatical definition and semantic interpretation. Secondly,… More >

  • Open Access

    ARTICLE

    Development of an Ultrasonic Nomogram for Preoperative Prediction of Castleman Disease Pathological Type

    Xinfang Wang1, Lianqing Hong2, Xi Wu3, Jia He3, Ting Wang3,4,*, Hongbo Li5, Shaoling Liu6

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 141-154, 2019, DOI:10.32604/cmc.2019.06030

    Abstract An ultrasonic nomogram was developed for preoperative prediction of Castleman disease (CD) pathological type (hyaline vascular (HV) or plasma cell (PC) variant) to improve the understanding and diagnostic accuracy of ultrasound for this disease. Fifty cases of CD confirmed by pathology were gathered from January 2012 to October 2018 from three hospitals. A grayscale ultrasound image of each patient was collected and processed. First, the region of interest of each gray ultrasound image was manually segmented using a process that was guided and calibrated by radiologists who have been engaged in imaging diagnosis for more than 5 years. In addition,… More >

  • Open Access

    ARTICLE

    Designing and Optimization of Fuzzy Sliding Mode Controller for Nonlinear Systems

    Zhe Sun1, Yunrui Bi2, Songle Chen1, Bing Hu1, Feng Xiang3, Yawen Ling1, Zhixin Sun1, ∗

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 119-128, 2019, DOI:10.32604/cmc.2019.05274

    Abstract For enhancing the control effectiveness, we firstly design a fuzzy logic based sliding mode controller (FSMC) for nonlinear crane systems. On basis of overhead crane dynamic characteristic, the sliding mode function with regard to trolley position and payload angle. Additionally, in order to eliminate the chattering problem of sliding mode control, the fuzzy logic theory is adopted to soften the control performance. Moreover, aiming at the FSMC parameter setting problem, a DE algorithm based optimization scheme is proposed for enhancing the control performance. Finally, by implementing the computer simulation, the DE based FSMC can effectively tackle the overhead crane sway… More >

  • Open Access

    ARTICLE

    Improved Logistic Regression Algorithm Based on Kernel Density Estimation for Multi-Classification with Non-Equilibrium Samples

    Yang Yu1, Zeyu Xiong1,*, Yueshan Xiong1, Weizi Li2

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 103-118, 2019, DOI:10.32604/cmc.2019.05154

    Abstract Logistic regression is often used to solve linear binary classification problems such as machine vision, speech recognition, and handwriting recognition. However, it usually fails to solve certain nonlinear multi-classification problem, such as problem with non-equilibrium samples. Many scholars have proposed some methods, such as neural network, least square support vector machine, AdaBoost meta-algorithm, etc. These methods essentially belong to machine learning categories. In this work, based on the probability theory and statistical principle, we propose an improved logistic regression algorithm based on kernel density estimation for solving nonlinear multi-classification. We have compared our approach with other methods using non-equilibrium samples,… More >

Displaying 1931-1940 on page 194 of 1962. Per Page