Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (84)
  • Open Access

    ARTICLE

    An Aerial Target Recognition Algorithm Based on Self-Attention and LSTM

    Futai Liang1,2, Xin Chen1,*, Song He1, Zihao Song1, Hao Lu3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1101-1121, 2024, DOI:10.32604/cmc.2024.055326 - 15 October 2024

    Abstract In the application of aerial target recognition, on the one hand, the recognition error produced by the single measurement of the sensor is relatively large due to the impact of noise. On the other hand, it is difficult to apply machine learning methods to improve the intelligence and recognition effect due to few or no actual measurement samples. Aiming at these problems, an aerial target recognition algorithm based on self-attention and Long Short-Term Memory Network (LSTM) is proposed. LSTM can effectively extract temporal dependencies. The attention mechanism calculates the weight of each input element and… More >

  • Open Access

    ARTICLE

    DeepBio: A Deep CNN and Bi-LSTM Learning for Person Identification Using Ear Biometrics

    Anshul Mahajan*, Sunil K. Singla

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1623-1649, 2024, DOI:10.32604/cmes.2024.054468 - 27 September 2024

    Abstract The identification of individuals through ear images is a prominent area of study in the biometric sector. Facial recognition systems have faced challenges during the COVID-19 pandemic due to mask-wearing, prompting the exploration of supplementary biometric measures such as ear biometrics. The research proposes a Deep Learning (DL) framework, termed DeepBio, using ear biometrics for human identification. It employs two DL models and five datasets, including IIT Delhi (IITD-I and IITD-II), annotated web images (AWI), mathematical analysis of images (AMI), and EARVN1. Data augmentation techniques such as flipping, translation, and Gaussian noise are applied to More >

  • Open Access

    ARTICLE

    A Lightweight Intrusion Detection System Using Convolutional Neural Network and Long Short-Term Memory in Fog Computing

    Hawazen Alzahrani1, Tarek Sheltami1, Abdulaziz Barnawi2, Muhammad Imam2,*, Ansar Yaser3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4703-4728, 2024, DOI:10.32604/cmc.2024.054203 - 12 September 2024

    Abstract The Internet of Things (IoT) links various devices to digital services and significantly improves the quality of our lives. However, as IoT connectivity is growing rapidly, so do the risks of network vulnerabilities and threats. Many interesting Intrusion Detection Systems (IDSs) are presented based on machine learning (ML) techniques to overcome this problem. Given the resource limitations of fog computing environments, a lightweight IDS is essential. This paper introduces a hybrid deep learning (DL) method that combines convolutional neural networks (CNN) and long short-term memory (LSTM) to build an energy-aware, anomaly-based IDS. We test this… More >

  • Open Access

    ARTICLE

    A Complex Fuzzy LSTM Network for Temporal-Related Forecasting Problems

    Nguyen Tho Thong1, Nguyen Van Quyet1,2, Cu Nguyen Giap3,*, Nguyen Long Giang1, Luong Thi Hong Lan4

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4173-4196, 2024, DOI:10.32604/cmc.2024.054031 - 12 September 2024

    Abstract Time-stamped data is fast and constantly growing and it contains significant information thanks to the quick development of management platforms and systems based on the Internet and cutting-edge information communication technologies. Mining the time series data including time series prediction has many practical applications. Many new techniques were developed for use with various types of time series data in the prediction problem. Among those, this work suggests a unique strategy to enhance predicting quality on time-series datasets that the time-cycle matters by fusing deep learning methods with fuzzy theory. In order to increase forecasting accuracy… More >

  • Open Access

    ARTICLE

    Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images

    Prasanalakshmi Balaji1,*, Omar Alqahtani1, Sangita Babu2, Mousmi Ajay Chaurasia3, Shanmugapriya Prakasam4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 443-458, 2024, DOI:10.32604/cmes.2024.053158 - 20 August 2024

    Abstract Breast cancer is a significant threat to the global population, affecting not only women but also a threat to the entire population. With recent advancements in digital pathology, Eosin and hematoxylin images provide enhanced clarity in examining microscopic features of breast tissues based on their staining properties. Early cancer detection facilitates the quickening of the therapeutic process, thereby increasing survival rates. The analysis made by medical professionals, especially pathologists, is time-consuming and challenging, and there arises a need for automated breast cancer detection systems. The upcoming artificial intelligence platforms, especially deep learning models, play an More >

  • Open Access

    ARTICLE

    DPAL-BERT: A Faster and Lighter Question Answering Model

    Lirong Yin1, Lei Wang1, Zhuohang Cai2, Siyu Lu2,*, Ruiyang Wang2, Ahmed AlSanad3, Salman A. AlQahtani3, Xiaobing Chen4, Zhengtong Yin5, Xiaolu Li6, Wenfeng Zheng2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 771-786, 2024, DOI:10.32604/cmes.2024.052622 - 20 August 2024

    Abstract Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems. However, with the constant evolution of algorithms, data, and computing power, the increasing size and complexity of these models have led to increased training costs and reduced efficiency. This study aims to minimize the inference time of such models while maintaining computational performance. It also proposes a novel Distillation model for PAL-BERT (DPAL-BERT), specifically, employs knowledge distillation, using the PAL-BERT model as the teacher model to train two student models: DPAL-BERT-Bi and DPAL-BERT-C. This research enhances the dataset More >

  • Open Access

    REVIEW

    An Integrated Analysis of Yield Prediction Models: A Comprehensive Review of Advancements and Challenges

    Nidhi Parashar1, Prashant Johri1, Arfat Ahmad Khan5, Nitin Gaur1, Seifedine Kadry2,3,4,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 389-425, 2024, DOI:10.32604/cmc.2024.050240 - 18 July 2024

    Abstract The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research. Deep learning (DL) and machine learning (ML) models effectively deal with such challenges. This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024. In addition, it analyses the effectiveness of various input parameters considered in crop yield prediction models. We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield. The… More >

  • Open Access

    ARTICLE

    A New Industrial Intrusion Detection Method Based on CNN-BiLSTM

    Jun Wang, Changfu Si, Zhen Wang, Qiang Fu*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4297-4318, 2024, DOI:10.32604/cmc.2024.050223 - 20 June 2024

    Abstract Nowadays, with the rapid development of industrial Internet technology, on the one hand, advanced industrial control systems (ICS) have improved industrial production efficiency. However, there are more and more cyber-attacks targeting industrial control systems. To ensure the security of industrial networks, intrusion detection systems have been widely used in industrial control systems, and deep neural networks have always been an effective method for identifying cyber attacks. Current intrusion detection methods still suffer from low accuracy and a high false alarm rate. Therefore, it is important to build a more efficient intrusion detection model. This paper… More >

  • Open Access

    ARTICLE

    A Novel Locomotion Rule Rmbedding Long Short-Term Memory Network with Attention for Human Locomotor Intent Classification Using Multi-Sensors Signals

    Jiajie Shen1, Yan Wang1,*, Dongxu Zhang2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4349-4370, 2024, DOI:10.32604/cmc.2024.047903 - 20 June 2024

    Abstract Locomotor intent classification has become a research hotspot due to its importance to the development of assistive robotics and wearable devices. Previous work have achieved impressive performance in classifying steady locomotion states. However, it remains challenging for these methods to attain high accuracy when facing transitions between steady locomotion states. Due to the similarities between the information of the transitions and their adjacent steady states. Furthermore, most of these methods rely solely on data and overlook the objective laws between physical activities, resulting in lower accuracy, particularly when encountering complex locomotion modes such as transitions.… More >

  • Open Access

    ARTICLE

    Improving the Transmission Security of Vein Images Using a Bezier Curve and Long Short-Term Memory

    Ahmed H. Alhadethi1,*, Ikram Smaoui2, Ahmed Fakhfakh3, Saad M. Darwish4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4825-4844, 2024, DOI:10.32604/cmc.2024.047852 - 20 June 2024

    Abstract The act of transmitting photos via the Internet has become a routine and significant activity. Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced. This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images. The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression. This paper introduces… More >

Displaying 11-20 on page 2 of 84. Per Page