Gang Li1,#, Ru Wang1,#, Yang Zhang2,*, Chuanyun Xu2, Xinyu Fan1, Zheng Zhou1, Pengfei Lv1, Zihan Ruan1
CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3267-3288, 2025, DOI:10.32604/cmc.2025.067763
- 23 September 2025
Abstract Currently, challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection. Since small objects occupy only a few pixels in an image, the extracted features are limited, and mainstream downsampling convolution operations further exacerbate feature loss. Additionally, due to the occlusion-prone nature of small objects and their higher sensitivity to localization deviations, conventional Intersection over Union (IoU) loss functions struggle to achieve stable convergence. To address these limitations, LR-Net is proposed for small object detection. Specifically, the proposed Lossless Feature Fusion (LFF) method transfers spatial… More >