Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,310)
  • Open Access

    ARTICLE

    The Plateau Dilemma: Identifying Key Factors of Depression Risk among Middle-Aged and Older Chinese with Chronic Diseases

    Zhe He1, Yaning Zhang2,*

    International Journal of Mental Health Promotion, Vol.27, No.11, pp. 1747-1768, 2025, DOI:10.32604/ijmhp.2025.070491 - 28 November 2025

    Abstract Background: Depression represents a significant global mental health burden, particularly among middle-aged and older Chinese with chronic diseases in high-altitude regions, where harsh environmental conditions and limited social support exacerbate mental health disparities. This paper aims to develop an interpretable machine learning prediction framework to identify the key factors of depression in this vulnerable population, thereby proposing targeted intervention measures. Methods: Utilizing data from the China Health and Retirement Longitudinal Study in 2020, this paper screened out and analyzed 2431 samples. Subsequently, Recursive Feature Elimination and Least Absolute Shrinkage and Selection Operator were applied to screen… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks

    Kinzah Noor1, Agbotiname Lucky Imoize2,*, Michael Adedosu Adelabu3, Cheng-Chi Lee4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1575-1664, 2025, DOI:10.32604/cmes.2025.073200 - 26 November 2025

    Abstract The envisioned 6G wireless networks demand advanced Multiple Access (MA) schemes capable of supporting ultra-low latency, massive connectivity, high spectral efficiency, and energy efficiency (EE), especially as the current 5G networks have not achieved the promised 5G goals, including the projected 2000 times EE improvement over the legacy 4G Long Term Evolution (LTE) networks. This paper provides a comprehensive survey of Artificial Intelligence (AI)-enabled MA techniques, emphasizing their roles in Spectrum Sensing (SS), Dynamic Resource Allocation (DRA), user scheduling, interference mitigation, and protocol adaptation. In particular, we systematically analyze the progression of traditional and modern… More > Graphic Abstract

    A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks

  • Open Access

    ARTICLE

    Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete: Interpreting Nonlinear Synergies among Binder Components and Proportions

    Yassir M. Abbas*, Abdulaziz Alsaif*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1789-1819, 2025, DOI:10.32604/cmes.2025.073088 - 26 November 2025

    Abstract The rapid advancement of three-dimensional printed concrete (3DPC) requires intelligent and interpretable frameworks to optimize mixture design for strength, printability, and sustainability. While machine learning (ML) models have improved predictive accuracy, their limited transparency has hindered their widespread adoption in materials engineering. To overcome this barrier, this study introduces a Random Forests ensemble learning model integrated with SHapley Additive exPlanations (SHAP) and Partial Dependence Plots (PDPs) to model and explain the compressive strength behavior of 3DPC mixtures. Unlike conventional “black-box” models, SHAP quantifies each variable’s contribution to predictions based on cooperative game theory, which enables… More >

  • Open Access

    ARTICLE

    A Unified Parametric Divergence Operator for Fermatean Fuzzy Environment and Its Applications in Machine Learning and Intelligent Decision-Making

    Zhe Liu1,2,3,*, Sijia Zhu4, Yulong Huang1,*, Tapan Senapati5,6,7, Xiangyu Li8, Wulfran Fendzi Mbasso9, Himanshu Dhumras10, Mehdi Hosseinzadeh11,12,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2157-2188, 2025, DOI:10.32604/cmes.2025.072352 - 26 November 2025

    Abstract Uncertainty and ambiguity are pervasive in real-world intelligent systems, necessitating advanced mathematical frameworks for effective modeling and analysis. Fermatean fuzzy sets (FFSs), as a recent extension of classical fuzzy theory, provide enhanced flexibility for representing complex uncertainty. In this paper, we propose a unified parametric divergence operator for FFSs, which comprehensively captures the interplay among membership, non-membership, and hesitation degrees. The proposed operator is rigorously analyzed with respect to key mathematical properties, including non-negativity, non-degeneracy, and symmetry. Notably, several well-known divergence operators, such as Jensen-Shannon divergence, Hellinger distance, and χ2-divergence, are shown to be special cases More >

  • Open Access

    ARTICLE

    Efficient Time-Series Feature Extraction and Ensemble Learning for Appliance Categorization Using Smart Meter Data

    Ugur Madran, Saeed Mian Qaisar*, Duygu Soyoglu

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1969-1992, 2025, DOI:10.32604/cmes.2025.072024 - 26 November 2025

    Abstract Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids. It offers substantial benefits across social, environmental, and economic dimensions. To effectively realize these advantages, a fine-grained collection and analysis of smart meter data is essential. However, the high dimensionality and volume of such time-series present significant challenges, including increased computational load, data transmission overhead, latency, and complexity in real-time analysis. This study proposes a novel, computationally efficient framework for feature extraction and selection tailored to smart meter time-series data. The approach begins with an extensive offline analysis, where features are… More >

  • Open Access

    REVIEW

    Deep Learning and Federated Learning in Human Activity Recognition with Sensor Data: A Comprehensive Review

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1389-1485, 2025, DOI:10.32604/cmes.2025.071858 - 26 November 2025

    Abstract Human Activity Recognition (HAR) represents a rapidly advancing research domain, propelled by continuous developments in sensor technologies and the Internet of Things (IoT). Deep learning has become the dominant paradigm in sensor-based HAR systems, offering significant advantages over traditional machine learning methods by eliminating manual feature extraction, enhancing recognition accuracy for complex activities, and enabling the exploitation of unlabeled data through generative models. This paper provides a comprehensive review of recent advancements and emerging trends in deep learning models developed for sensor-based human activity recognition (HAR) systems. We begin with an overview of fundamental HAR… More > Graphic Abstract

    Deep Learning and Federated Learning in Human Activity Recognition with Sensor Data: A Comprehensive Review

  • Open Access

    ARTICLE

    Structure-Aware Malicious Behavior Detection through 2D Spatio-Temporal Modeling of Process Hierarchies

    Seong-Su Yoon, Dong-Hyuk Shin, Ieck-Chae Euom*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2683-2706, 2025, DOI:10.32604/cmes.2025.071577 - 26 November 2025

    Abstract With the continuous expansion of digital infrastructures, malicious behaviors in host systems have become increasingly sophisticated, often spanning multiple processes and employing obfuscation techniques to evade detection. Audit logs, such as Sysmon, offer valuable insights; however, existing approaches typically flatten event sequences or rely on generic graph models, thereby discarding the natural parent-child process hierarchy that is critical for analyzing multiprocess attacks. This paper proposes a structure-aware threat detection framework that transforms audit logs into a unified two-dimensional (2D) spatio-temporal representation, where process hierarchy is modeled as the spatial axis and event chronology as the More >

  • Open Access

    REVIEW

    AI-Powered Digital Twin Frameworks for Smart Grid Optimization and Real-Time Energy Management in Smart Buildings: A Survey

    Saeed Asadi1, Hajar Kazemi Naeini1, Delaram Hassanlou2, Abolhassan Pishahang3, Saeid Aghasoleymani Najafabadi4, Abbas Sharifi5, Mohsen Ahmadi6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1259-1301, 2025, DOI:10.32604/cmes.2025.070528 - 26 November 2025

    Abstract The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solutions are needed to improve efficiency, resilience, and environmental performance. This paper reviews the integration of Digital Twin (DT) technologies and Machine Learning (ML) for optimizing energy management in smart buildings connected to smart grids. A key enabler of this integration is the Internet of Things (IoT), which provides the sensor networks and real-time data streams that fee/d DT–ML frameworks, enabling accurate monitoring, forecasting, and adaptive control.… More >

  • Open Access

    ARTICLE

    An Impact-Aware and Taxonomy-Driven Explainable Machine Learning Framework with Edge Computing for Security in Industrial IoT–Cyber Physical Systems

    Tamara Zhukabayeva1,2, Zulfiqar Ahmad1,3,*, Nurbolat Tasbolatuly4, Makpal Zhartybayeva1, Yerik Mardenov1,4, Nurdaulet Karabayev1,*, Dilaram Baumuratova1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2573-2599, 2025, DOI:10.32604/cmes.2025.070426 - 26 November 2025

    Abstract The Industrial Internet of Things (IIoT), combined with the Cyber-Physical Systems (CPS), is transforming industrial automation but also poses great cybersecurity threats because of the complexity and connectivity of the systems. There is a lack of explainability, challenges with imbalanced attack classes, and limited consideration of practical edge–cloud deployment strategies in prior works. In the proposed study, we suggest an Impact-Aware Taxonomy-Driven Machine Learning Framework with Edge Deployment and SHapley Additive exPlanations (SHAP)-based Explainable AI (XAI) to attack detection and classification in IIoT-CPS settings. It includes not only unsupervised clustering (K-Means and DBSCAN) to extract… More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning and Fractional-Order Dynamical Framework for Multi-Scale Prediction of Breast Cancer Progression

    David Amilo1,*, Khadijeh Sadri1, Evren Hincal1,2, Mohamed Hafez3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2189-2222, 2025, DOI:10.32604/cmes.2025.070298 - 26 November 2025

    Abstract Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction. We present a hybrid framework that integrates machine learning (ML) and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales. On the Wisconsin Diagnostic Breast Cancer dataset, seven ML algorithms were evaluated, with deep neural networks (DNNs) achieving the highest accuracy (97.72%). Key morphological features (area, radius, texture, and concavity) were identified as top malignancy predictors, aligning with clinical intuition. Beyond static classification, we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression. The model revealed clinically interpretable patterns: More >

Displaying 41-50 on page 5 of 1310. Per Page