Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access

    ARTICLE

    Multi-Binary Classifiers Using Optimal Feature Selection for Memory-Saving Intrusion Detection Systems

    Ye-Seul Kil1,#, Yu-Ran Jeon1,#, Sun-Jin Lee1, Il-Gu Lee1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1473-1493, 2024, DOI:10.32604/cmes.2024.052637 - 27 September 2024

    Abstract With the rise of remote work and the digital industry, advanced cyberattacks have become more diverse and complex in terms of attack types and characteristics, rendering them difficult to detect with conventional intrusion detection methods. Signature-based intrusion detection methods can be used to detect attacks; however, they cannot detect new malware. Endpoint detection and response (EDR) tools are attracting attention as a means of detecting attacks on endpoints in real-time to overcome the limitations of signature-based intrusion detection techniques. However, EDR tools are restricted by the continuous generation of unnecessary logs, resulting in poor detection… More >

  • Open Access

    ARTICLE

    Modern Mobile Malware Detection Framework Using Machine Learning and Random Forest Algorithm

    Mohammad Ababneh*, Ayat Al-Droos, Ammar El-Hassan

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1171-1191, 2024, DOI:10.32604/csse.2024.052875 - 13 September 2024

    Abstract With the high level of proliferation of connected mobile devices, the risk of intrusion becomes higher. Artificial Intelligence (AI) and Machine Learning (ML) algorithms started to feature in protection software and showed effective results. These algorithms are nonetheless hindered by the lack of rich datasets and compounded by the appearance of new categories of malware such that the race between attackers’ malware, especially with the assistance of Artificial Intelligence tools and protection solutions makes these systems and frameworks lose effectiveness quickly. In this article, we present a framework for mobile malware detection based on a… More >

  • Open Access

    ARTICLE

    A Low Complexity ML-Based Methods for Malware Classification

    Mahmoud E. Farfoura1,*, Ahmad Alkhatib1, Deema Mohammed Alsekait2,*, Mohammad Alshinwan3,7, Sahar A. El-Rahman4, Didi Rosiyadi5, Diaa Salama AbdElminaam6,7

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4833-4857, 2024, DOI:10.32604/cmc.2024.054849 - 12 September 2024

    Abstract The article describes a new method for malware classification, based on a Machine Learning (ML) model architecture specifically designed for malware detection, enabling real-time and accurate malware identification. Using an innovative feature dimensionality reduction technique called the Interpolation-based Feature Dimensionality Reduction Technique (IFDRT), the authors have significantly reduced the feature space while retaining critical information necessary for malware classification. This technique optimizes the model’s performance and reduces computational requirements. The proposed method is demonstrated by applying it to the BODMAS malware dataset, which contains 57,293 malware samples and 77,142 benign samples, each with a 2381-feature… More >

  • Open Access

    ARTICLE

    Malware Detection Using Dual Siamese Network Model

    ByeongYeol An1, JeaHyuk Yang2, Seoyeon Kim2, Taeguen Kim3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 563-584, 2024, DOI:10.32604/cmes.2024.052403 - 20 August 2024

    Abstract This paper proposes a new approach to counter cyberattacks using the increasingly diverse malware in cyber security. Traditional signature detection methods that utilize static and dynamic features face limitations due to the continuous evolution and diversity of new malware. Recently, machine learning-based malware detection techniques, such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), have gained attention. While these methods demonstrate high performance by leveraging static and dynamic features, they are limited in detecting new malware or variants because they learn based on the characteristics of existing malware. To overcome these limitations, malware… More >

  • Open Access

    ARTICLE

    An Attention-Based Approach to Enhance the Detection and Classification of Android Malware

    Abdallah Ghourabi*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2743-2760, 2024, DOI:10.32604/cmc.2024.053163 - 15 August 2024

    Abstract The dominance of Android in the global mobile market and the open development characteristics of this platform have resulted in a significant increase in malware. These malicious applications have become a serious concern to the security of Android systems. To address this problem, researchers have proposed several machine-learning models to detect and classify Android malware based on analyzing features extracted from Android samples. However, most existing studies have focused on the classification task and overlooked the feature selection process, which is crucial to reduce the training time and maintain or improve the classification results. The… More >

  • Open Access

    ARTICLE

    Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection

    Islam Zada1,*, Mohammed Naif Alatawi2, Syed Muhammad Saqlain1, Abdullah Alshahrani3, Adel Alshamran4, Kanwal Imran5, Hessa Alfraihi6

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2917-2939, 2024, DOI:10.32604/cmc.2024.052835 - 15 August 2024

    Abstract Malware attacks on Windows machines pose significant cybersecurity threats, necessitating effective detection and prevention mechanisms. Supervised machine learning classifiers have emerged as promising tools for malware detection. However, there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection. Addressing this gap can provide valuable insights for enhancing cybersecurity strategies. While numerous studies have explored malware detection using machine learning techniques, there is a lack of systematic comparison of supervised classifiers for Windows malware detection. Understanding the relative effectiveness of these classifiers can inform the selection of… More >

  • Open Access

    ARTICLE

    Malware Attacks Detection in IoT Using Recurrent Neural Network (RNN)

    Abeer Abdullah Alsadhan1, Abdullah A. Al-Atawi2, Hanen karamti3, Abid Jameel4, Islam Zada5, Tan N. Nguyen6,*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 135-155, 2024, DOI:10.32604/iasc.2023.041130 - 21 May 2024

    Abstract IoT (Internet of Things) devices are being used more and more in a variety of businesses and for a variety of tasks, such as environmental data collection in both civilian and military situations. They are a desirable attack target for malware intended to infect specific IoT devices due to their growing use in a variety of applications and their increasing computational and processing power. In this study, we investigate the possibility of detecting IoT malware using recurrent neural networks (RNNs). RNN is used in the proposed method to investigate the execution operation codes of ARM-based More >

  • Open Access

    ARTICLE

    MoBShield: A Novel XML Approach for Securing Mobile Banking

    Saeed Seraj1, Ali Safaa Sadiq1,*, Omprakash Kaiwartya1, Mohammad Aljaidi2, Alexandros Konios1, Mohammed Ali3, Mohammed Abazeed3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2123-2149, 2024, DOI:10.32604/cmc.2024.048914 - 15 May 2024

    Abstract Mobile banking security has witnessed significant R&D attention from both financial institutions and academia. This is due to the growing number of mobile baking applications and their reachability and usefulness to society. However, these applications are also attractive prey for cybercriminals, who use a variety of malware to steal personal banking information. Related literature in mobile banking security requires many permissions that are not necessary for the application’s intended security functionality. In this context, this paper presents a novel efficient permission identification approach for securing mobile banking (MoBShield) to detect and prevent malware. A permission-based… More >

  • Open Access

    ARTICLE

    Robust Malicious Executable Detection Using Host-Based Machine Learning Classifier

    Khaled Soliman1,*, Mohamed Sobh2, Ayman M. Bahaa-Eldin2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1419-1439, 2024, DOI:10.32604/cmc.2024.048883 - 25 April 2024

    Abstract The continuous development of cyberattacks is threatening digital transformation endeavors worldwide and leads to wide losses for various organizations. These dangers have proven that signature-based approaches are insufficient to prevent emerging and polymorphic attacks. Therefore, this paper is proposing a Robust Malicious Executable Detection (RMED) using Host-based Machine Learning Classifier to discover malicious Portable Executable (PE) files in hosts using Windows operating systems through collecting PE headers and applying machine learning mechanisms to detect unknown infected files. The authors have collected a novel reliable dataset containing 116,031 benign files and 179,071 malware samples from diverse… More >

  • Open Access

    ARTICLE

    The Effect of Key Nodes on the Malware Dynamics in the Industrial Control Network

    Qiang Fu1, Jun Wang1,*, Changfu Si1, Jiawei Liu2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 329-349, 2024, DOI:10.32604/cmc.2024.048117 - 25 April 2024

    Abstract As industrialization and informatization become more deeply intertwined, industrial control networks have entered an era of intelligence. The connection between industrial control networks and the external internet is becoming increasingly close, which leads to frequent security accidents. This paper proposes a model for the industrial control network. It includes a malware containment strategy that integrates intrusion detection, quarantine, and monitoring. Based on this model, the role of key nodes in the spread of malware is studied, a comparison experiment is conducted to validate the impact of the containment strategy. In addition, the dynamic behavior of… More >

Displaying 1-10 on page 1 of 71. Per Page