Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (622)
  • Open Access

    PROCEEDINGS

    A Modified Rate-Dependent Peridynamic Model with Rotation Effect for Dynamic Mechanical Behavior of Ceramic Materials

    Yaxun Liu1,2, Lisheng Liu1,2,*, Hai Mei1,2, Qiwen Liu1,2, Xin Lai1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09007

    Abstract As a mathematical expression of the dynamic mechanical behavior, the constitutive model plays an indispensable role in numerical simulations of ceramic materials. The current bond-based peridynamic constitutive models can accurately describe the dynamic mechanical behavior of partial ceramic materials under impact loading, however, the predicted value of the Poisson’s ratio is 0.25, which is not true for most of the known ceramic materials. Herein, based on the existing bond-based peridynamic constitutive model, the current study utilizes the description of tangential bond force and considers the influence of bond force on rotation to accurately predict the Poisson's ratio of different types… More >

  • Open Access

    PROCEEDINGS

    Peridynamic Simulation of Pellet-Clad Mechanical Interaction in Nuclear Fuel Rods

    Qiqing Liu1, Yin Yu1, Y.L. Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09220

    Abstract The thermomechanical response and potential cracking in nuclear fuel rods are extremely important for nuclear safety analysis. The Pellet-Clad Mechanical Interaction (PCMI) is a significant factor for the thermomechanical behaviors of pellet and clad. This study presents a PCMI model based on ordinary statebased peridynamic (OSB-PD) theory, which considering the heat transfer through the gap and contact heat transfer between pellet and clad. The two-dimensional (2D) models are constructed through irregular nonuniform discretization. The pellet model includes the random variability of the critical stretch of each bond based on normal distribution. The contact model with non-uniform discretization is proposed in… More >

  • Open Access

    PROCEEDINGS

    Chemo-Mechanical Peridynamic Simulation of Dynamic Fracture-Pattern Formation in Lithium-Ion Batteries

    Xiaofei Wang1, Qi Tong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09181

    Abstract Mechanical failure due to lithium-ion diffusion is one of the main obstacles to fulfill the potential of the electrode materials. Various fracture patterns in different electrode structures are observed in practice, which may have a profound impact on the performance and the service life of electrodes during operation. However, the mechanisms are largely unclear and still lack systematic understanding. Here we propose a coupled chemo-mechanical model based on peridynamics [1] and use it to study the dynamic fracturepattern formation in electrode materials and solid electrolytes during lithiation/delithiation cycles. We found in hollow core-shell nanowires that geometric parameters such as the… More >

  • Open Access

    ARTICLE

    Prediction and Output Estimation of Pattern Moving in Non-Newtonian Mechanical Systems Based on Probability Density Evolution

    Cheng Han1,*, Zhengguang Xu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 515-536, 2024, DOI:10.32604/cmes.2023.043464

    Abstract A prediction framework based on the evolution of pattern motion probability density is proposed for the output prediction and estimation problem of non-Newtonian mechanical systems, assuming that the system satisfies the generalized Lipschitz condition. As a complex nonlinear system primarily governed by statistical laws rather than Newtonian mechanics, the output of non-Newtonian mechanics systems is difficult to describe through deterministic variables such as state variables, which poses difficulties in predicting and estimating the system’s output. In this article, the temporal variation of the system is described by constructing pattern category variables, which are non-deterministic variables. Since pattern category variables have… More >

  • Open Access

    ARTICLE

    Biomechanical Analysis of Tai Chi (Eight Methods and Five Steps) for Athletes’ Body Balance Control

    Yuanyuan Feng*

    Molecular & Cellular Biomechanics, Vol.20, No.2, pp. 97-108, 2023, DOI:10.32604/mcb.2023.045804

    Abstract Background: The increasing number of Tai Chi practitioners has led to extensive attention from researchers regarding the role of Tai Chi exercise. Numerous studies have been conducted through various experiments to examine the effects of Tai Chi on physical and mental improvement. Objective: This paper aims to investigate the effect of practicing Tai Chi (eight methods and five steps) on athletes’ body balance control ability from a biomechanical perspective. Methods: Twenty male athletes were randomly divided into two groups. They had no significant differences in age, height, weight, and training time. The Tai Chi group performed Tai Chi (eight methods… More > Graphic Abstract

    Biomechanical Analysis of Tai Chi (Eight Methods and Five Steps) for Athletes’ Body Balance Control

  • Open Access

    ARTICLE

    The Influence of Acid on the Rock Mechanical Characteristics of Deep Shale in the Wujiaping Formation

    Hao Zhang1, Yan Zhang1,*, Wei Liu2, Ximin Zhang3, Xiang Liu2

    Energy Engineering, Vol.121, No.1, pp. 27-42, 2024, DOI:10.32604/ee.2023.041410

    Abstract The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale, which affects the fracturing effect. Accordingly, we designed and conducted indoor experiments related to the changes in macro and microscopic characteristics after the interaction of acid with the shale of Wujiaping Formation, based on which the characteristic law of fracture volume modification after acid fracturing was studied using numerical simulation. The results demonstrate that the pores and fractures are enlarged and the structure is significantly loosened after the acid immersion. And a 15% concentration of hydrochloric acid can effectively dissolve shale. Furthermore, the… More >

  • Open Access

    ARTICLE

    Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm

    Guilin Wu1,2, Shenghua Huang1, Tingting Liu3, Zhuoni Yang3, Yuesong Wu2, Guihong Wei1, Peng Yu1,*, Qilin Zhang4, Jun Feng4, Bo Zeng5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2709-2725, 2024, DOI:10.32604/cmes.2023.031399

    Abstract Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life and prognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice. However, esophageal stents of different types and parameters have varying adaptability and effectiveness for patients, and they need to be individually selected according to the patient’s specific situation. The purpose of this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3D printing technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer,… More >

  • Open Access

    ARTICLE

    An Innovative Finite Element Geometric Modeling of Single-Layer Multi-Bead WAAMed Part

    Xiangman Zhou1,*, Jingping Qin1, Zichuan Fu1, Min Wang1, Youlu Yuan1, Junjian Fu1, Haiou Zhang2, Seyed Reza Elmi Hosseini3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2383-2401, 2024, DOI:10.32604/cmes.2023.029249

    Abstract Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residual stress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layer multi-bead profile geometric modeling method through the isosceles trapezoid function is proposed to build the FE model of the WAAM process. Firstly, a straight-line model for overlapping beads based on the parabola function was established to calculate the optimal center distance. Then, the isosceles trapezoid-based profile was employed to replace the parabola profiles of the parabola-based overlapping model to establish an innovative isosceles trapezoid-based multi-bead overlapping geometric model. The rationality of… More >

  • Open Access

    ARTICLE

    Finite Element Method Simulation of Wellbore Stability under Different Operating and Geomechanical Conditions

    Junyan Liu1, Ju Liu1, Yan Wang1, Shuang Liu1, Qiao Wang1, Yihe Du2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 205-218, 2024, DOI:10.32604/fdmp.2023.030645

    Abstract The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion. A finite element model, based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion, is used here to analyze such a risk. The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences. The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not; the same is true for the instability area. After acidizing, the… More >

  • Open Access

    ARTICLE

    Influence of Bayer Red Mud on the Operational and Mechanical Characteristics of Composite Cement Mortar

    Cheng Hu1,2, Weiheng Xiang1,3,*, Ping Chen2,3, Yi Yang4,5, Libo Zhou3, Jiufang Jiang5, Shunkai Li2,4, Yang Ming1, Qing Li3

    Journal of Renewable Materials, Vol.11, No.11, pp. 3945-3956, 2023, DOI:10.32604/jrm.2023.027544

    Abstract The aim of this study is to enhance the value and utilization of red mud generated in the Bayer process by preparing composite cement mortars. The effects of two different types of Bayer red mud with varying physical and chemical characteristics on the fluidity, mechanical strength, mineral composition, and microstructure of the composite cement mortar were systematically evaluated. The results showed that the optimal addition of red mud A was 10 wt%, while it was 20 wt% for red mud B. The mechanical properties of the composite cement mortar met the standards for P·O42.5 cement. Furthermore, the composite mortar with… More >

Displaying 31-40 on page 4 of 622. Per Page