Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (708)
  • Open Access

    PROCEEDINGS

    Mechano-Regulated Intercellular Waves Among Cancer Cells

    Chenyu Liang1, Bo Zeng2, Mai Tanaka3, Andrea Kannita Noy1, Matthew Barrett1, Erica Hengartner1, Abygale Cochrane4, Laura Garzon1, Mitchell Litvinov5, Dietmar Siemann3, Xin Tang1,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011126

    Abstract Cancer accounts for 12.6% of all human deaths worldwide and 90% of cancer-related deaths are due to metastasis: the dissemination of invasive tumor cells from the primary tumors to other vital organs [1-3]. However, how these invasive tumor cells coordinate with each other to achieve the dissemination remains unclear. Recently we discovered that human tumor cells can initiate and transmit previously unknown long-distance (~100s m) intercellular biochemical waves in a microenvironment-mechanics-regulated manner. [4-5] In this presentation, we will present our new results on (1) the 2D/3D spatial-temporal characterization of the long-distance and the intra-/inter-cellular Ca2+ signals; More >

  • Open Access

    PROCEEDINGS

    In-Situ Carbide-Reinforced NiCoCr Medium-Entropy Alloy Manufactured by Laser Powder Bed Fusion; Fabrication, Microstructure, Mechanical Property, and High Temperature Oxidation Behavior

    Kee-Ahn Lee1,*, So-Yeon Park1, Soo-Bin Kim1, Young-Kyun Kim1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012196

    Abstract NiCoCr medium-entropy alloys (MEAs) with controlled interstitial C contents were fabricated by using powder bed fusion-type additive manufacturing (AM) process. And the microstructure, mechanical properties, and high temperature oxidation resistance of in-situ carbide-reinforced NiCoCr Medium alloy were investigated. The initial microstructure shows that both AM-built interstitial C-doped MEAs had a heterogeneous grain structure and epitaxial growth grains along the building direction. The analysis of electron channeling contrast images showed a large amount of nano-sized precipitates (in-situ precipitates) distributed at the sub-structure boundaries formed by a dislocation network, and a large number of stacking faults were simultaneously observed inside the sub-structure. A… More >

  • Open Access

    PROCEEDINGS

    Exploring Heat Treatment Effects on an Additively Manufactured Al6xxx Alloy

    Zhiheng Hu1,*, Hang Li Seet1, Sharon Mui Ling Nai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012118

    Abstract Heat treatment is a common way for enhancing the mechanical properties of the aluminum alloys. For the alloys developed for laser powder bed fusion, changes in chemical composition, together with the non-equilibrium microstructures resulting from the ultrafast cooling rate during the process, potentially alter the effectiveness of heat treatment. This study investigates the effect of the heat treatments on a Al6xxx alloy fabricated by LPBF. The response to the same heat treatment varies depending on the initial microstructure, and similarly, different heat treatments yield distinct outcomes when applied to the same original microstructures. While there… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Microstructure Manipulation of an Additively Manufactured CoCrNi Medium Entropy Alloy for Superior Mechanical Properties and Tunable Mechanical Anisotropy

    Chenze Li1, Manish Jain1,2, Qian Liu1, Zhuohan Cao1, Michael Ferry3, Jamie J. Kruzic1, Bernd Gludovatz1, Xiaopeng Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011290

    Abstract Laser powder bed fusion (LPBF) additive manufacturing (AM) technology has become a versatile tool for producing new microstructures in metal components, offering novel mechanical properties for different applications. In this work, enhanced ductility (~55% elongation) and tunable mechanical anisotropy (ratio of ductility along vertical to horizontal orientation from ~0.2 to ~1) were achieved for a CoCrNi medium entropy alloy (MEA) by multi-scale synergistic microstructure manipulation (i.e., melt pool boundary, grain morphology and crystallographic texture) through adjusting key LPBF processing parameters (e.g., laser power and scan speed). By increasing the volumetric energy density (VED) from 68.3… More >

  • Open Access

    PROCEEDINGS

    Hierarchical Tessellation Enables Programmable Morphing Matter

    Xudong Yang1, Yifan Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011275

    Abstract Shape-morphing materials present promising avenues for mimicking the adaptive characteristics of biological organisms capable of transitioning between diverse morphologies. However, existing morphing strategies through pre-arranged localized strain and/or cut/fold patterns have a limited range of achievable geometries, and the morphed structures usually have low stiffness due to the intrinsic softness of underlying materials. To overcome these challenges, we are inspired by the inherently non-monolithic architectures in living organisms, e.g., the nacre or bone consisting of stiff building blocks joined by the weak interfaces, which endow creatures ingenious shape-morphing abilities and tunable mechanical properties through collectively… More >

  • Open Access

    PROCEEDINGS

    Multi-Shape Memory Mechanical Metamaterials

    Hang Yang1,2,3, Wei Zhai3, Ma Li1,*, Damiano Pasini2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.010893

    Abstract Stimuli-responsive materials can alter their physicochemical properties, e.g., shape, color, or stiffness, upon exposure to an external trigger, e.g., heat, light, or humidity, exhibiting environmental adaptability. Among them, shape memory materials are limited by their multi-shape memory effect and the complex thermomechanical programming. In this work, we harness the distinct temperature-dependent elastic moduli of two 3D-printable polymers, that do not rely upon their intrinsic shape memory effect and compositional alteration to generate robust and simplified multi-shape memory responses in a variety of stimuli-responsive mechanical metamaterials, bypassing the typical intricate programming of conventional multi-shape memory polymers.… More >

  • Open Access

    PROCEEDINGS

    The Quasi-Static Compressive Properties and Energy Absorption Behavior of Alumina/Aluminum Lattice Structure Composites

    Han Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012843

    Abstract Aluminum lattice structures have the advantages of lightweight, high specific strength/stiffness and excellent plasticity, while alumina ceramic lattice structures usually show high strength and significant brittleness. Therefore, alumina/aluminum interpenetrating composites can combine two distinct mechanical properties and show superior performance, which is beneficial to applications in aerospace and military industries. In this study, alumina ceramic lattice structures were prepared by additive manufacturing (AM) and used as infiltration skeleton. The molten aluminum was then infiltrated into alumina ceramic lattice structures. By this method, the alumina/aluminum ordered structure composites were prepared. Through mechanical experiments and finite element More >

  • Open Access

    PROCEEDINGS

    Micromechanical Analysis of Discontinuous Flax Fiber Reinforced Epoxy Composites

    Zhoucheng Su1,*, Dan Wang1, Yucheng Zhong2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012259

    Abstract In this study, we developed a micromechanical model for exploring the longitudinal tensile behavior of unidirectional discontinuous flax fiber reinforced epoxy composites, emphasizing the significant roles of the aspect ratio of fibers and fiber-matrix interfacial properties. Representative volume elements (RVEs) are built using a novel approach which accounts for the randomness of the fiber distribution, discontinuity of the fibers, and the modeling of the interfaces as cohesive zone elements.
    Finite element simulations of the RVEs under longitudinal tension were performed with proper periodic boundary conditions (PBCs). We investigated how fiber aspect ratio, interfacial properties and matrix… More >

  • Open Access

    PROCEEDINGS

    Design of 3D Printable Microlattices for Sound Absorption

    Xinwei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011083

    Abstract The emergence of 3D printing opens new possibilities for the development of advanced and innovative metamaterials, particularly in the realm of microlattices. Microlattices are characterized as periodic cellular solids with submillimeter-sized features, such as struts, shells, or plates, arranged spatially in a three-dimensional way. Herein, based on four published studies, we provide a perspective on the design, employing analytical and numerical methods, as well as the performance of 3D-printed microlattices for sound absorption.
    The first study focuses on face-centered cubic-based plate and truss structures [1]. Impedance tube measurements reveal that all the microlattices display absorption curves… More >

  • Open Access

    PROCEEDINGS

    Mechanism Analysis of Thermal Pain and Mechanical Matching of Stretchable Bio-Integrated Devices Integrated on Biological Tissues

    Yuhang Li1,*, Jin Nan1, Yang Wang1, Yafei Yin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.013412

    Abstract As a new type of electronic device, stretchable bio-integrated devices are generally composed of inorganic functional components, stretchable interconnected structures, soft biocompatible substrates and encapsulations, and have wide adaptability to a variety of complex surfaces of soft biological tissues. The small size of functional components, the thin substrate thickness, and poor thermal conductivity can easily lead to thermal burns caused by local temperature concentration in biological tissues. The unique microstructure characteristics and biological thermal characteristics of biological tissues make the heat transfer behavior of integrated devices in biological tissues significantly different from the traditional Fourier… More >

Displaying 31-40 on page 4 of 708. Per Page