Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    Preparation and Analysis of Carbon Fiber-Silicon Carbide Thermally Conductive Asphalt Concrete

    Zhiyong Yang, Enjie Hu, Lei Xi, Zhi Chen*, Feng Xiong, Chuanhai Zhan

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 705-723, 2024, DOI:10.32604/fdmp.2023.044030

    Abstract An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented. The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly. The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method, and the related performances were measured. Then the temperature rise rate and surface temperature were studied through field heating tests. Finally,… More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE ENHANCEMENT OF PARAFFIN WAX WITH AL2O3 AND CuO NANOPARTICLES – A NUMERICAL STUDY

    A. Valan Arasua,*, Agus P. Sasmitob,†, Arun S. Mujumdarb

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-7, 2011, DOI:10.5098/hmt.v2.4.3005

    Abstract The heat transfer enhancement of paraffin wax, a cheap and widely used latent heat thermal energy storage material, using nanoparticles is investigated. The effects of nanoparticle volume fraction on both the melting and solidification rates of paraffin wax are analysed and compared for Al2O3 and CuO nanoparticles. Present results show that dispersing nanoparticles in smaller volumetric fractions increase the heat transfer rate. The enhancement in thermal performance of paraffin wax is greater for Al2O3 compared with that for CuO nanoparticles. More >

  • Open Access

    ARTICLE

    THE EFFECT OF MELTING ON MIXED CONVECTION HEAT AND MASS TRANSFER IN NON-NEWTONIAN NANOFLUID SATURATED IN POROUS MEDIUM

    R.R. Kairia, Ch. RamReddyb,*

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-7, 2015, DOI:10.5098/hmt.6.6

    Abstract In this paper, we investigated the influence of melting on mixed convection heat and mass transfer from the vertical flat plate in a non-Newtonian nanofluid saturated porous medium. The wall and the ambient medium are maintained at constant, but different, levels of temperature and concentration. The Ostwald–de Waele power-law model is used to characterize the non-Newtonian nanofluid behavior. A similarity solution for the transformed governing equations is obtained. The numerical computation is carried out for various values of the non-dimensional physical parameters. The variation of temperature, concentration, heat and mass transfer coefficients with the power-law index, mixed convection parameter, melting… More >

  • Open Access

    ARTICLE

    Meter-Scale Thin-Walled Structure with Lattice Infill for Fuel Tank Supporting Component of Satellite: Multiscale Design and Experimental Verification

    Xiaoyu Zhang1,2, Huizhong Zeng2, Shaohui Zhang2, Yan Zhang3,*, Mi Xiao4, Liping Liu2, Hao Zhou2,*, Hongyou Chai2, Liang Gao4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 201-220, 2024, DOI:10.32604/cmes.2023.029389

    Abstract Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting from the sandwich effect. Such structures can be fabricated by metallic additive manufacturing technique, such as selective laser melting (SLM). However, the maximum dimensions of actual structures are usually in a sub-meter scale, which results in restrictions on their appliance in aerospace and other fields. In this work, a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall. The… More >

  • Open Access

    ARTICLE

    MELTING AND RADIATION EFFECTS ON MIXED CONVECTION BOUNDARY LAYER VISCOUS FLOW OVER A VERTICAL PLATE IN PRESENCE OF HOMOGENEOUS HIGHER ORDER CHEMICAL REACTION

    D. R. V. S. R. K. Sastry

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.3

    Abstract The present paper investigates the combined effects of melting phenomenon and viscous dissipation over a steady incompressible mixed convection boundary layer fluid flow along a vertical plate. Radiation and double dispersion are also taken into consideration. Further effect of homogeneous chemical reaction of order ’n’ is studied over the non-Darcy porous plate. Continuum equations that characterize fluid flow are transformed to a set of non linear ordinary differential equations through a suitable similarity transformation. These equations are then solved by MATLAB ’bvp4c’ iterative programming method. As a matter of accuracy and validation, available results are compared with the present study… More >

  • Open Access

    ARTICLE

    Assessment of the Mechanical Properties of Carbon-Fiber Heating Cables in Snow and Ice Melting Applications

    Zhiyong Yang1, Jiacheng Zhang1, Henglin Xiao1,2, Zhi Chen1,*, Tian Bao1, Yin Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2267-2288, 2023, DOI:10.32604/fdmp.2023.028652

    Abstract The use of carbon-fiber heating cables (CFHC) to achieve effective melting of snow and ice deposited on roads is a method used worldwide. In this study, tensile and compressive tests have been conducted to analyze the mechanical properties of the CFHC and assess whether the maximum tensile and compressive strengths can meet the pavement design specifications. In order to study the aging produced by multiple cycles of heating and cooling, in particular, the CFHC was repeatedly heated in a cold chamber with an ambient temperature ranging between −20°C and +40°C. Moreover, to evaluate how the strength of the pavement is… More > Graphic Abstract

    Assessment of the Mechanical Properties of Carbon-Fiber Heating Cables in Snow and Ice Melting Applications

  • Open Access

    ARTICLE

    EFFECT OF MELTING HEAT TRANSFER AND THERMAL RADIATION ON SQUEEZING FLOW OF A CASSON FLUID WITH CHEMICAL REACTION IN POROUS MEDIUM

    Bhagawan Singh Yadav, Sushila Choudhary

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-10, 2022, DOI:10.5098/hmt.18.18

    Abstract The present study concentrates on squeeze MHD flow of Casson fluid between parallel plates surrounded by a porous medium. The influence of melting, viscous dissipation and thermal radiation on the heat transfer process is disclosed. The characteristics of mass transport are detected with chemical reactions. Suitable similarity transforms are used to convert the partial differential equations into a system of ordinary differential equations. The transformed equations are solved using the bvp4c matlab solver with the shooting method. Our present study concluded that fluid velocity has direct relation with melting parameter while it is reciprocally related to squeezing parameter and reverse… More >

  • Open Access

    ARTICLE

    Numerical Investigation of the Thermal Behavior of a System with a Partition Wall Incorporating a Phase Change Material

    Nisrine Hanchi*, Hamid Hamza, Jawad Lahjomri, Khalid Zniber, Abdelaziz Oubarra

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1227-1236, 2023, DOI:10.32604/fdmp.2023.022530

    Abstract The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material (PCM). The wall separates two environments with different thermal properties. The first one is conditioned, while the adjacent space is characterized by a temperature that changes sinusoidally in time. The effect of the PCM is assessed through a comparative analysis of the cases with and without PCM. The performances are evaluated in terms of dimensionless energy stored within the wall, comfort temperature and variations of these quantities as a function of the amount of PCM and its emplacement. More >

  • Open Access

    ARTICLE

    Thermal Analysis of Melting Occurring Inside a Finned Rectangular Enclosure Equipped with Discrete Pulsed Protruding Heat Sources

    Brahim Amahan1, Hamid El Qarnia2,*, Ali El Afif1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1539-1549, 2022, DOI:10.32604/fdmp.2022.021839

    Abstract This paper numerically investigates the effect of the location of a horizontal fin on the melting of a phase change material (PCM) inside a rectangular enclosure heated by multiple discrete pulsed protruding heat sources. The fin and the phase change material filling the enclosure store the thermal energy extracted from the heat sources, in sensible and latent forms. The heat sources are assumed to simulate electronic components undergoing a superheating technical issue. By extracting heat from the electronics, the PCM plays the role of a heat sink. To analyze the thermal behavior and predict the cooling performance of the proposed… More >

  • Open Access

    ARTICLE

    Influence of Anthracite-to-Ilmenite-Ratio on Element Distribution in Titanium Slag Smelting in Large DC Furnaces

    Shihong Huang1, Ting Lei2, Yan Cui3, Zhifeng Nie4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 883-896, 2022, DOI:10.32604/fdmp.2022.018537

    Abstract The distribution of titanium, carbon and associated elements (calcium, magnesium, silicon and aluminum) in a smelting process is studied by means of a chemical equilibrium calculation method for multiphase and multicomponent systems, and verified through comparison with production results. In particular, using the coexistence theory for titanium slag structures, the influence of the AIR (anthracite to ilmenite ratio) on the distribution of such elements is analyzed. The results show that the AIR can be adjusted to achieve a selective reduction of oxides in the melt. More >

Displaying 1-10 on page 1 of 32. Per Page