Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    Optimization of Aluminum Alloy Formation Process for Selective Laser Melting Using a Differential Evolution-Framed JAYA Algorithm

    Siwen Xu1, Hanning Chen2, Rui Ni1, Maowei He2, Zhaodi Ge3, Xiaodan Liang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.071398 - 09 December 2025

    Abstract Selective Laser Melting (SLM), an advanced metal additive manufacturing technology, offers high precision and personalized customization advantages. However, selecting reasonable SLM parameters is challenging due to complex relationships. This study proposes a method for identifying the optimal process window by combining the simulation model with an optimization algorithm. JAYA is guided by the principle of preferential behavior towards best solutions and avoidance of worst ones, but it is prone to premature convergence thus leading to insufficient global search. To overcome limitations, this research proposes a Differential Evolution-framed JAYA algorithm (DEJAYA). DEJAYA incorporates four key enhancements More >

  • Open Access

    ARTICLE

    Multiphysics Simulation of Flow and Heat Transfer in Titanium Slag Smelting within an Electric Arc Furnace

    Yifan Wang1, Shan Qing1,2,*, Jifan Li1,3,*, Xiaohui Zhang1,3, Junxiao Wang4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2253-2272, 2025, DOI:10.32604/fdmp.2025.067429 - 30 September 2025

    Abstract Heat and mass transfer within an electric arc furnace are strongly influenced by extreme temperatures and complex electromagnetic fields. Variations in temperature distribution play a crucial role in determining melt flow patterns and in the formation of stagnant regions, commonly referred to as dead zones. To better understand the internal flow dynamics and thermal behavior of the furnace, this study develops a multiphysics coupled model that integrates fluid heat transfer with Maxwell’s electromagnetic field equations. Numerical simulations are conducted to systematically examine how key operational parameters, such as electric current and arc characteristics, affect the… More >

  • Open Access

    ARTICLE

    Rising Bubbles and Ensuing Wake Effects in Bottom-Blown Copper Smelters

    Zhi Yang1,2, Xiaohui Zhang1,2,*, Xinting Tong3, Yutang Zhao4, Teng Xia1,2, Hua Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1133-1150, 2025, DOI:10.32604/fdmp.2025.061737 - 30 May 2025

    Abstract In bottom-blown copper smelting processes, oxygen-enriched air is typically injected into the melt through a lance, generating bubbles that ascend and agitate the melt, enhancing mass, momentum, and heat transfer within the furnace. The melt’s viscosity, which varies across reaction stages, and the operating conditions influence bubble size and dynamics. This study investigates the interplay between melt viscosity and bubble diameter on bubble motion using numerical simulations and experiments. In particular, the volume of fluid (VOF) method and Ω-identification technique were employed to analyze bubble velocity, deformation, trajectories, and wake characteristics. The results showed that More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Thermo-Viscoelastoplastic Behavior of Dievar Alloy under Hot Rotary Swaging

    Josef Izák1,*, Marek Benč2, Petr Opěla2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3115-3133, 2025, DOI:10.32604/cmes.2025.059234 - 03 March 2025

    Abstract The paper deals with the FEM (Finite Element Method) simulation of rotary swaging of Dievar alloy produced by additive manufacturing technology Selective Laser Melting and conventional process. Swaging was performed at a temperature of 900°C. True flow stress-strain curves were determined for 600°C–900°C and used to construct a Hensel-Spittel model for FEM simulation. The process parameters, i.e., stress, temperature, imposed strain, and force, were investigation during the rotary swaging process. Firstly, the stresses induced during rotary swaging and the resistance of the material to deformation were investigated. The amount and distribution of imposed strain in… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath

    Teng Xia1,2, Xiaohui Zhang1,2,*, Ding Ma1,2, Zhi Yang1,2, Xinting Tong3, Yutang Zhao4, Hua Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 121-140, 2025, DOI:10.32604/fdmp.2025.058683 - 24 January 2025

    Abstract Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy. With this approach, feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphase flow within the furnace. Understanding the flow structure and temperature distribution in this setup is crucial for optimizing production. In this study, gas-liquid interactions, and temperature profiles under varying air-injection conditions are examined by means of numerical simulation for a 3.2 m × 20 m furnace. The results indicate that the high-velocity regions are essentially distributed near the lance within the… More > Graphic Abstract

    Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath

  • Open Access

    ARTICLE

    Contact Melting in an Elliptical Tube under the Second Kind of Thermal Boundary Condition

    Wenzhen Chen, Junjie Ma*, Jianli Hao

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1823-1837, 2024, DOI:10.32604/fhmt.2024.057896 - 19 December 2024

    Abstract The contact melting process of solid phase change material (PCM) has essential applications in some energy storage systems, which is related closely to the heat resource’s geometry and thermal boundary conditions. The contact melting of PCM in a horizontal elliptical tube under the second kind of thermal boundary condition, namely the constant surface heat flux, was investigated analytically. The analysis model is proposed based on the contact melting lubrication theory, and the model deduces the basic dimensionless equations. The variation rules of parameters such as contact melting speed, melting completion time, and boundary layer thickness More >

  • Open Access

    PROCEEDINGS

    High-Resolution Multi-Metal 3D Printing: A Novel Approach Using Binder Jet Printing and Selecting Laser Melting in Powder Bed Fusion

    Beng-Loon Aw1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011990

    Abstract This study introduces a novel method that combines Binder Jet Printing (BJP) and Selective Laser Melting (SLM) techniques to achieve unprecedented high-speed and high-resolution 3D printing of fine metal powders in Laser Powder Bed Fusion (LPBF). Our approach comfortably attains a resolution of 0.2 mm, enabling the selective deposition of fine powder (D50: 30 µm) made from multiple materials within a single print layer. We demonstrate the capability of this technique through the printing of a composite structure composed of copper alloy and 18Ni300 Maraging tool steel, showcasing its potential for fast-cooling tooling applications. The More >

  • Open Access

    PROCEEDINGS

    Microstructure Refinement for Superior Ductility of Al–Si Alloy by Electron Beam Melting Additive Manufacturing

    Huakang Bian1,3,*, Yufan Zhao2,3, Akihiko Chiba3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012491

    Abstract Refining the Si phase in Al‒Si alloy has been a research interest for decades. Previous studies suggested many Al- and Si-enriched nano-segments (approximately 100 nm) can coexist in a melted Al–Si liquid solution when they were reheated to a temperature between 1080 and 1290 °C. These nano-segments could be retained to become crystal nuclei and grew into fine grains under a very fast cooling rate. Thus, this provides a novel approach of refining the microstructure of Al–Si alloy using electron beam melting (EBM) technology because the temperature exceeds 1500 °C in the melting pool with… More >

  • Open Access

    PROCEEDINGS

    High-Rate Multiaxial Behaviour of Electron Beam Melted Ti-6Al-2Sn-4Zr-2Mo: An Experimental Study Using a Novel Tension-Torsion Hopkinson Bar Apparatus

    Yuan Xu1,*, Govind Gour2, Manuela Galati3, Abdollah Saboori3, Antonio Pellegrino4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013220

    Abstract The dynamic behaviour of Ti-6Al-2Sn-4Zr-2Mo additively manufactured by electron beam melting (EBM) is presented in this study considering synchronised tension-torsion loading. A bespoke spilt Hopkinson Tension-Torsion bar is used to generate combined tensile and torsional stress pulses that interact simultaneously with a novel specimen geometry. High-speed digital imaging correlation techniques are employed to assess the high-rate deformation and crack propagation of the specimen. The material's dynamic response was analysed across a spectrum of stress states, including uniaxial tension, shear, and combinations of tension and shear at strain rates ranging between 500 s-1 and 2000 s-1. Comparable More >

  • Open Access

    PROCEEDINGS

    Refined Microstructures and Enhanced Strength of In-Situ TiBw/Ti-6.5Al-2.5Zr-1Mo-1V Composites by Selective Laser Melting

    Qi An1,*, Lihua Cui1, Lujun Huang1, Lin Geng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011973

    Abstract Ti-6.5Al-2.5Zr-1Mo-1V alloy is a near α titanium alloy, which has been widely used in aerospace fields due to its low density, high specific strength, good corrosion resistance and high-temperature durability. To further improve the strength and high-temperature durability of Ti-6.5Al-2.5Zr-1Mo-1V complex components, the spherical Ti-6.5Al-2.5Zr-1Mo-1V alloy powder with a particle size of 15~53 μm and TiB2 powder with a particle size of 0.5~1 μm were used to fabricate in-situ TiBw reinforced Ti-6.5Al-2.5Zr-1Mo-1V composites through low energy ball milling and selective laser melting (SLM). The results show that the TiB whiskers are uniformly distributed in the More >

Displaying 1-10 on page 1 of 47. Per Page