Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,389)
  • Open Access

    ARTICLE

    Numerical Validations of the Tangent Linear Model for the Lorenz Equations

    Tengjin Zhao1, Jing Zhang1, Zhilin Li2, Zhiyue Zhang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 83-104, 2019, DOI:10.32604/cmes.2019.04483

    Abstract The validity of the tangent linear model (TLM) is studied numerically using the example of the Lorenz equations in this paper. The relationship between the limit of the validity time of the TLM and initial perturbations for the Lorenz equations is investigated using the Monte Carlo sampling method. A new error function between the nonlinear and the linear evolution of the perturbations is proposed. Furthermore, numerical sensitivity analysis is carried to establish the relationship between parameters and the validity of the TLM, such as the initial perturbation, the prediction time, the time step size and so on, by the method… More >

  • Open Access

    ARTICLE

    A Hierarchy Distributed-Agents Model for Network Risk Evaluation Based on Deep Learning

    Jin Yang1, Tao Li1, Gang Liang1,*, Wenbo He2, Yue Zhao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 1-23, 2019, DOI:10.32604/cmes.2019.04727

    Abstract Deep Learning presents a critical capability to be geared into environments being constantly changed and ongoing learning dynamic, which is especially relevant in Network Intrusion Detection. In this paper, as enlightened by the theory of Deep Learning Neural Networks, Hierarchy Distributed-Agents Model for Network Risk Evaluation, a newly developed model, is proposed. The architecture taken on by the distributed-agents model are given, as well as the approach of analyzing network intrusion detection using Deep Learning, the mechanism of sharing hyper-parameters to improve the efficiency of learning is presented, and the hierarchical evaluative framework for Network Risk Evaluation of the proposed… More >

  • Open Access

    ARTICLE

    Finite Element Modeling in Drilling of Nimonic C-263 Alloy Using Deform-3D

    M. Nagaraj1,*, A. John Presin Kumar2, C. Ezilarasan3, Rishab Betala4

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 679-692, 2019, DOI:10.31614/cmes.2019.04924

    Abstract The paper proposes a simulated 3D Finite Element Model (FEM) for drilling of Nickel based super alloy known as Nimonic C-263. The Lagrangian finite element model-based simulations were performed to determine the thrust force, temperature generation, effective stress, and effective strain. The simulations were performed according to the L27 orthogonal array. A perfect plastic work piece was assumed, and the shape is considered to be cylindrical. The spindle speed, feed rate, and point angle were considered as the input parameters. The work piece was modeled by Johnson–Cook (JC) material model and tungsten carbide (WC) was chosen as the drill bit… More >

  • Open Access

    ARTICLE

    A Non-Ordinary State-Based Peridynamic Formulation for Failure of Concrete Subjected to Impacting Loads

    Liwei Wu1, Dan Huang1,*, Yepeng Xu1, Lei Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 561-581, 2019, DOI:10.31614/cmes.2019.04347

    Abstract Strain hardening and strain rate play an important role in dynamic deformation and failure problems such as high-velocity impact cases. In this paper, a non-ordinary state-based peridynamic model for failure and damage of concrete materials subjected to impacting condition is proposed, taking the advantages of both damage model and non-local peridynamic method. The Holmquist-Johnson-Cook (HJC) model describing the mechanical character and damage of concrete materials under large strain, high strain rate and high hydrostatic pressure was reformulated in the framework of non-ordinary state-based peridynamic theory, and the corresponding numerical approach was developed. The proposed model and numerical approach were validated… More >

  • Open Access

    ARTICLE

    Dynamic Fracture Analysis for Shale Material by Peridynamic Modelling

    Zhanqi Cheng1, Zhenyu Wang1, Zhongtao Luo2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 509-527, 2019, DOI:10.31614/cmes.2019.04339

    Abstract In this work, a bond-based peridynamics (PD) model was built to analyze the dynamic fracture of shale material. Both the the convergence studies and the result of dynamic crack propagation were presented. As well-known, crack propagation, aggregation, and bifurcation play an critical role in the failure analysis of brittle materials such as shale. The dynamic crack propagation and branching analysis of shale by using the PD method were discussed. Firstly, the valid and accuracy of the PD model for the rock materials was verified by comparing with the existed numerical results. Secondly, we discussed the convergence both with uniform grid… More >

  • Open Access

    ARTICLE

    Quantifying Roll Feel of a Car by Using a Musculoskeletal Mathematical Model

    Masaki Izawa1, Ryota Araki1, Tatsuro Suzuki1, Kaito Watanabe2, Kazuhito Misaji3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 493-507, 2019, DOI:10.31614/cmes.2019.04470

    Abstract Primary purpose of this research is to create a three-dimensional musculoskeletal mathematical model of a driver of a car using a motion capture system. The model is then used in an analysis of drive torque around joints and attached muscles as a vehicle travels in different travel modes and damping force settings to examine ‘burdens’ for the driver. Previous studies proposed a method of quantifying the degree of musculoskeletal load in simple human motion from the changes in drive torque around joints and attached muscles. However, examination of the level of burdens for the driver while driving using this method… More >

  • Open Access

    ARTICLE

    Dynamic Response of Floating Body Subjected to Underwater Explosion Bubble and Generated Waves with 2D Numerical Model

    Zhaoli Tian1,2, Yunlong Liu1,2,*, Shiping Wang1, A Man Zhang1, Youwei Kang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 397-423, 2019, DOI:10.31614/cmes.2019.04419

    Abstract The low frequency load of an underwater explosion bubble and the generated waves can cause significant rigid motion of a ship that threaten its stability. In order to study the fluid-structure interaction qualitatively, a two-dimensional underwater explosion bubble dynamics model, based on the potential flow theory, is established with a double-vortex model for the doubly connected bubble dynamics simulation, and the bubble shows similar dynamics to that in 3-dimensional domain. A fully nonlinear fluid-structure interaction model is established considering the rigid motion of the floating body using the mode-decomposition method. Convergence test of the model is implemented by simulating the… More >

  • Open Access

    ARTICLE

    Numerical Simulation and Experimental Studies on Elastic-Plastic Fatigue Crack Growth

    Jie Wang1, Wei Jiang1,*, Qi Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 377-395, 2019, DOI:10.31614/cmes.2019.01836

    Abstract A elastic-plastic fatigue crack growth (FCG) finite element model was developed for predicting crack growth rate under cyclic load. The propagation criterion for this model was established based on plastically dissipated energy. The crack growth simulation under cyclic computation was implemented through the ABAQUS scripting interface. The predictions of this model are in good agreement with the results of crack propagation experiment of compact tension specimen made of 304 stainless steel. Based on the proposed model, the single peak overload retardation effect of elastic-plastic fatigue crack was analyzed. The results shows that the single peak overload will reduce the accumulation… More >

  • Open Access

    ARTICLE

    Residual Stresses in Resistance Spot Welded AZ61 Mg Alloy

    Davood Afshari1,*, Soheil Mirzaahamdi1, Zuheir Barsoum2

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 275-290, 2019, DOI:10.31614/cmes.2019.03880

    Abstract The use of magnesium alloys has been rapidly increased due to their ability to maintain high strengths at light weights. However weldability of steels and aluminum alloys by using resistance spot weld (RSW) process is a major issue, because it cannot be directly utilized for magnesium alloys. In this study, a structural-thermal-electrical finite element (FE) model has been developed to predict the distribution of residual stresses in RSW AZ61 magnesium alloy. Thermophysical and thermomechanical properties of AZ61 magnesium alloy have been experimentally determined, and have been used in FE model to increase the accuracy of the model. X-ray diffraction (XRD)… More >

  • Open Access

    ARTICLE

    Model of CEL for 3D Elements in PDMs of Unidirectional Composite Structures

    Tianliang Qin1, Libin Zhao2,3,*, Jifeng Xu1, Fengrui Liu2,3,4, Jianyu Zhang5

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.1, pp. 157-176, 2019, DOI:10.31614/cmes.2019.04379

    Abstract Progressive damage models (PDMs) have been increasingly used to simulate the failure process of composite material structures. To accurately simulate the damage in each ply, 3D PDMs of composite materials have received more attention recently. A characteristic element length (CEL), which is an important dimensional parameter of PDMs for composite materials, is quite difficult to obtain for 3D elements, especially considering the crack directions during damage propagation. In this paper, CEL models for 3D elements in PDMs of unidirectional composite structures are presented, and their approximate formulae are deduced. The damage in unidirectional composite materials can be divided into fiber… More >

Displaying 2851-2860 on page 286 of 3389. Per Page