Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,389)
  • Open Access

    ARTICLE

    A Computational Inverse Technique to Determine the Dynamic Constitutive Model Parameters of Concrete

    R. Chen1, X. Han1,2, J. Liu1, W. Zhang1

    CMC-Computers, Materials & Continua, Vol.25, No.2, pp. 135-158, 2011, DOI:10.3970/cmc.2011.025.135

    Abstract In this paper, a computational inverse technique is presented to determine the constitutive parameters of concrete based on the penetration experiments. In this method, the parameter identification problem is formulated as an inverse problem, in which the parameters of the constitutive model can be characterized through minimizing error functions of the penetration depth measured in experiments and that computed by forward solver LS-DYNA. To reduce the time for forward calculation during the inverse procedure, radial basis function approximate model is used to replace the actual computational model. In order to improve the accuracy of approximation model, a local-densifying method combined… More >

  • Open Access

    ARTICLE

    Simulation Analysis and Experiment Study of Nanocutting with AFM Probe on the Surface of Sapphire Substrate by Using Three Dimensional Quasi-steady Molecular Statics Nanocutting Model

    Zone-Ching Lin1, Ying-Chih Hsu1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 75-106, 2011, DOI:10.3970/cmc.2011.025.075

    Abstract The three-dimensional quasi-steady molecular statics nanocutting model is used by this paper to carry out simulation analysis of nanocutting of sapphire in order to explore the effects of conical tools with different tip radii of probe and straight-line cutting at different cutting depths, on cutting force. Meanwhile, this paper uses a cutting tool of atomic force microscopy (AFM) with a probe tip similar to a semisphere to conduct nanocutting experiment of sapphire substrate. Furthermore, from the experimental results of nanocutting sapphire substrate, this paper innovatively proposes the theoretical model and equation that the specific down force energy (SDFE) during nanocutting… More >

  • Open Access

    ARTICLE

    Experimental and Analytical Studies on Concrete Cylinders Wrapped with Fiber Reinforced Polymer

    Bhashya V.1, Ramesh G.1, Sundar Kumar S.1, Bharatkumar B. H.1, Krishnamoorthy T.S.1, Nagesh R Iyer.1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 47-74, 2011, DOI:10.3970/cmc.2011.025.047

    Abstract Fibre-reinforced polymers (FRPs) are being introduced into a wide variety of civil engineering applications. These materials have been found to be particularly attractive for applications involving the strengthening and rehabilitation of existing reinforced concrete structures. In this paper, experimental investigations and analytical studies on four series of the concrete cylinders wrapped with FRP are presented. First series consist of concrete cylinders wrapped with one layer carbon fiber reinforced polymer (CFRP), second series concrete cylinders wrapped with two layers CFRP, in third series, concrete cylinders were wrapped with one layer glass fiber reinforced polymer (GFRP) and the fourth series consist of… More >

  • Open Access

    ARTICLE

    Provably Secure APK Redevelopment Authorization Scheme in the Standard Model

    Daofeng Li1,3,*, Mingxing Luo2, Bowen Zhao1,3, Xiangdong Che4

    CMC-Computers, Materials & Continua, Vol.56, No.3, pp. 447-465, 2018, DOI: 10.3970/cmc.2018.03692

    Abstract The secure issues of APK are very important in Android applications. In order to solve potential secure problems and copyrights issues in redevelopment of APK files, in this paper we propose a new APK redevelopment mechanism (APK-SAN). By exploring sanitizable signature technology, APK-SAN allows the original developer to authorize specified modifier who can redevelop the designated source code of APK files. Our scheme does not require interactions between the developer and modifiers. It can reduce the communication overhead and computational overhead for developers. Especially, the signature of redeveloped APK files is valid and maintains the copyrights. The proposed APK-SAN signature… More >

  • Open Access

    ARTICLE

    A Distributed Intrusion Detection Model via Nondestructive Partitioning and Balanced Allocation for Big Data

    Xiaonian Wu1,*, Chuyun Zhang3, Runlian Zhang2, Yujue Wang2, Jinhua Cui4

    CMC-Computers, Materials & Continua, Vol.56, No.1, pp. 61-72, 2018, DOI: 10.3970/cmc.2018.02449

    Abstract There are two key issues in distributed intrusion detection system, that is, maintaining load balance of system and protecting data integrity. To address these issues, this paper proposes a new distributed intrusion detection model for big data based on nondestructive partitioning and balanced allocation. A data allocation strategy based on capacity and workload is introduced to achieve local load balance, and a dynamic load adjustment strategy is adopted to maintain global load balance of cluster. Moreover, data integrity is protected by using session reassemble and session partitioning. The simulation results show that the new model enjoys favorable advantages such as… More >

  • Open Access

    ARTICLE

    Determination of the Normal Contact Stiffness and Integration Time Step for the Finite Element Modeling of Bristle-Surface Interaction

    Libardo V. Vanegas-Useche1, Magd M. Abdel-Wahab2,3,4,*, Graham A. Parker5

    CMC-Computers, Materials & Continua, Vol.56, No.1, pp. 169-184, 2018, DOI: 10.3970/cmc.2018.01827

    Abstract In finite element modeling of impact, it is necessary to define appropriate values of the normal contact stiffness, Kn, and the Integration Time Step (ITS). Because impacts are usually of very short duration, very small ITSs are required. Moreover, the selection of a suitable value of Kn is a critical issue, as the impact behavior depends dramatically on this parameter. In this work, a number of experimental tests and finite element analyses have been performed in order to obtain an appropriate value of Kn for the interaction between a bristle of a gutter brush for road sweeping and a concrete… More >

  • Open Access

    ARTICLE

    Microstructural Modeling and Second-Order Two-Scale Computation for Mechanical Properties of 3D 4-Directional Braided Composites

    Zihao Yang1, Junzhi Cui2, Yufeng Nie1, Yatao Wu1, Bin Yang3, Bo Wu4

    CMC-Computers, Materials & Continua, Vol.38, No.3, pp. 175-194, 2013, DOI:10.3970/cmc.2013.038.175

    Abstract This study is concerned with the microstructural modeling and mechanical properties computation of three-dimensional (3D) 4-directional braided composites. Microstructure of the braided composite determines its mechanical properties and a precise geometry modeling of the composite is essential to predict the material properties. On the basis of microscopic observation, a new parameterized microstructural unit cell model is established in this paper. And this model truly simulates the microstructure of the braided composites. Furthermore, the mathematical relationships among the structural parameters, including the braiding angle, fiber volume fraction and braiding bitch, are derived. By using the unit cell model, the second-order two-scale… More >

  • Open Access

    ARTICLE

    A 3-D Coarser-Grained Computational Model for Simulating Large Protein Dynamics

    Jae-In Kim1, Hyoseon Jang2, Jeong-Hee Ahn3, Kilho Eom4, Sungsoo Na5

    CMC-Computers, Materials & Continua, Vol.9, No.2, pp. 137-152, 2009, DOI:10.3970/cmc.2009.009.137

    Abstract Protein dynamics is essential for gaining insight into biological functions of proteins. Although protein dynamics is well delineated by molecular model, the molecular model is computationally prohibited for simulating large protein structures. In this work, we provide the three-dimensional coarser-grained anisotropic model (CGAM), which is based on model reduction applicable to large protein structures. It is shown that CGAM achieves the fast computation on low-frequency modes, quantitatively comparable to original structural model such as elastic network model (ENM). This indicates that the CGAM by model reduction method enable us to understand the functional motion of large proteins with remarkable computational… More >

  • Open Access

    ARTICLE

    OpenSees Three-Dimensional Computational Modeling of Ground-Structure Systems and Liquefaction Scenarios

    Zhijian Qiu1, Jinchi Lu1, Ahmed Elgamal1,*, Lei Su2, Ning Wang3, Abdullah Almutairi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 629-656, 2019, DOI:10.32604/cmes.2019.05759

    Abstract The OpenSees computational platform has allowed unprecedented opportunities for conducting seismic nonlinear soil-structure interaction simulations. On the geotechnical side, capabilities such as coupled solid-fluid formulations and nonlinear incremental-plasticity approaches allow for representation of the involved dynamic/seismic responses. This paper presents recent research that facilitated such endeavors in terms of response of ground-foundation-structure systems using advanced material modeling techniques and high-performance computing resources. Representative numerical results are shown for large-scale soil-structure systems, and ground modification liquefaction countermeasures. In addition, graphical user interface enabling tools for routine usage of such 3D simulation environments are presented, as an important element in support of… More >

  • Open Access

    ARTICLE

    Determination of Working Pressure for Airport Runway Rubber Mark Cleaning Vehicle Based on Numeric Simulation

    Haojun Peng1,*, Zhongwei Wu1, Jinbing Xia1, Bolin Dong1, Yuntao Peng2, Linghe Wang3, Xingxing Ma3, Wei Shen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 799-813, 2019, DOI:10.32604/cmes.2019.06950

    Abstract In this paper, numeric simulations are performed for three dimension models built according to actual surface cleaner in airport runway rubber mark cleaning vehicle using ANSYS FLUENT software on the basis of previous research finished by the authors. After analyzing the simulated flow fields under different standoff distances between nozzle outlet and runway surface and different discharge pressures at nozzle outlet, the relationships of normal stress and shear stress at striking point to outlet pressure and standoff distance are obtained. Finally, the most appropriate discharge pressure at nozzle outlet for the studied surface cleaner model is found, and this will… More >

Displaying 2831-2840 on page 284 of 3389. Per Page