Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (153)
  • Open Access

    ARTICLE

    ENTROPY GENERATION OF THREE DIMENSIONAL BINGHAM NANOFLUID FLOW WITH CARBON NANOTUBES PASSING THROUGH PARALLEL PLATES

    P.S.S. Nagalakshmi, N. Vijaya*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-18, 2022, DOI:10.5098/hmt.19.17

    Abstract The main emphasis of this study is to examine the entropy generation of the spatial-temporal state of Bingham visco-plastic nanofluid flow between parallel plates are solved numerically using adequate similarity solutions. Python with BVP solver is used to interpret the results of the adopted model. Heat and mass transfer rate with respect to yield stress was investigated. The results report that the entopy generation of nanofluids exploring single and multiwalled carbon nanotubes dims with the increasing local thermal Peclet number nearer the lower and upper plates. Researchers have established that entropy generation can be reduced by increasing Fourier’s number (Fe)… More >

  • Open Access

    ARTICLE

    CONVECTIVE HEAT EXCHANGER FROM RENEWABLE SUN RADIATION BY NANOFLUIDS FLOW IN DIRECT ABSORPTION SOLAR COLLECTORS WITH ENTROPY

    Girma Tafesse , Mitiku Daba, Vedagiri G. Naidu

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-12, 2023, DOI:10.5098/hmt.20.27

    Abstract Innovative technologies necessitate extra energy, which can be captured from environmentally sustainable, renewable solar energy. Here, heat and mass transfer through stirring nanofluids in solar collectors for direct absorption of sunlight are pronounced. The similarity transformation served to turn mathematically regulated partial differential equations into sets of nonlinear higher-order ordinary differential equations. These equations have been resolved by the homotopy analysis method manipulating, BVPh2.0 package in Mathematica 12.1. Validations are justified through comparison. Afterward, stronger magnetic field interactions delay the nanofluids mobility. Temperature increases with thermal radiation and Biot numbers. Entropy formation and nanoparticle concentration dwindle when Schmidt’s number surges. More >

  • Open Access

    ARTICLE

    FLUID INFLOW AND HEAT TRANSFER ENHANCEMENT: AN EXPERIMENTAL ANALYSIS OF NANOFLUIDS IN MINCHANNEL

    Ameer Abed Jaddoa* , Karema Assi Hamad, Arshad Abdul Jaleil Hameed

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-9, 2023, DOI:10.5098/hmt.20.18

    Abstract In the Heat Transfer process, many innovations were introduced aiming to obtain the most optimum behavior of the cooling process using nanofluids as coolant liquids. These nanofluids have gained much attention in cooling systems due to their special rheological and thermal performance. In this work, an experimental evaluation is conducted for nanofluids Al2O3, SiO2, CuO, ZnO, and TiO2 nanoparticles applied to a mini-channel. The nanofluid particles were entirely spread out in purified water (size of 15 nm) before being passed to the heat sink through a confined inflow channel. The obtained results showed that the achieved improvement rates are 25%,20%,… More >

  • Open Access

    ARTICLE

    Prediction and Optimization of the Thermal Properties of TiO2/Water Nanofluids in the Framework of a Machine Learning Approach

    Jiachen Li1,2, Wenlong Deng3, Shan Qing1,2,*, Yiqin Liu4, Hao Zhang1,2, Min Zheng1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2181-2200, 2023, DOI:10.32604/fdmp.2023.027299

    Abstract In this study, comparing multiple models of machine learning, a multiple linear regression (MLP), multilayer feed-forward artificial neural network (BP) model, and a radial-basis feed-forward artificial neural network (RBF-BP) model are selected for the optimization of the thermal properties of TiO2/water nanofluids. In particular, the least squares support vector machine (LS-SVM) method and radial basis support vector machine (RB-SVM) method are implemented. First, curve fitting is performed by means of multiple linear regression in order to obtain bivariate correlation functions for thermal conductivity and viscosity of the nanofluid. Then the aforementioned models are used for a predictive analysis of the… More >

  • Open Access

    ARTICLE

    Nanoparticle Shape Effect on a Sodium–Alginate Based Cu–Nanofluid under a Transverse Magnetic Field

    Samia Rani1, H. A. M. Al–Sharifi2, Mohammad S. Zannon3, Abid Hussanan1,*, Zafar Ullah1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1875-1896, 2023, DOI:10.32604/fdmp.2023.025224

    Abstract Sodium-alginate (SA) based nanofluids represent a new generation of fluids with improved performances in terms of heat transfer. This work examines the influence of the nanoparticle shape on a non–Newtonian viscoplastic Cu–nanofluid pertaining to this category. In particular, a stretching/shrinking sheet subjected to a transverse magnetic field is considered. The proposed Cu–nanofluid consists of four different nanoparticles having different shapes, namely bricks, cylinders, platelets, and blades dispersed in a mixture of sodium alginate with Prandtl number Pr = 6.45. Suitable similarity transformations are employed to reduce non–linear PDEs into a system of ODEs and these equations and related boundary conditions… More >

  • Open Access

    ARTICLE

    Buoyancy Effects in the Peristaltic Flow of a Prandtl-Eyring Nanofluid with Slip Boundaries

    Hina Zahir*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1507-1519, 2023, DOI:10.32604/fdmp.2023.022520

    Abstract The interaction of nanoparticles with a peristaltic flow is analyzed considering a Prandtl-Eyring fluid under various conditions, such as the presence of a heat source/sink and slip effects in channels with a curvature. This problem has extensive background links with various fields in medical science such as chemotherapy and more in general nanotechnology. A similarity transformation is used to turn the original balance equations into a set of ordinary differential equations, which are then integrated numerically. The investigation reveals that nanofluids have valuable thermal capabilitises. More >

  • Open Access

    ARTICLE

    Impact of Artificial Compressibility on the Numerical Solution of Incompressible Nanofluid Flow

    Tohid Adibi1, Shams Forruque Ahmed2,*, Seyed Esmail Razavi3, Omid Adibi4, Irfan Anjum Badruddin5, Syed Javed5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5123-5139, 2023, DOI:10.32604/cmc.2023.034008

    Abstract The numerical solution of compressible flows has become more prevalent than that of incompressible flows. With the help of the artificial compressibility approach, incompressible flows can be solved numerically using the same methods as compressible ones. The artificial compressibility scheme is thus widely used to numerically solve incompressible Navier-Stokes equations. Any numerical method highly depends on its accuracy and speed of convergence. Although the artificial compressibility approach is utilized in several numerical simulations, the effect of the compressibility factor on the accuracy of results and convergence speed has not been investigated for nanofluid flows in previous studies. Therefore, this paper… More >

  • Open Access

    ARTICLE

    Numerical Assessment of Nanofluid Natural Convection Using Local RBF Method Coupled with an Artificial Compressibility Model

    Muneerah Al Nuwairan1,*, Elmiloud Chaabelasri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 133-154, 2023, DOI:10.32604/cmes.2022.022649

    Abstract In this paper, natural heat convection inside square and equilateral triangular cavities was studied using a meshless method based on collocation local radial basis function (RBF). The nanofluids used were Cu-water or -water mixture with nanoparticle volume fractions range of . A system of continuity, momentum, and energy partial differential equations was used in modeling the flow and temperature behavior of the fluids. Partial derivatives in the governing equations were approximated using the RBF method. The artificial compressibility model was implemented to overcome the pressure velocity coupling problem that occurs in such equations. The main goal of this work was… More > Graphic Abstract

    Numerical Assessment of Nanofluid Natural Convection Using Local RBF Method Coupled with an Artificial Compressibility Model

  • Open Access

    ARTICLE

    Computational-Analysis of the Non-Isothermal Dynamics of the Gravity-Driven Flow of Viscoelastic-Fluid-Based Nanofluids Down an Inclined Plane

    Idrees Khan1,2, Tiri Chinyoka1,2,*, Andrew Gill3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 767-781, 2023, DOI:10.32604/fdmp.2022.021921

    Abstract The paper explores the gravity-driven flow of the thin film of a viscoelastic-fluid-based nanofluids (VFBN) along an inclined plane under non-isothermal conditions and subjected to convective cooling at the free-surface. The Newton’s law of cooling is used to model the convective heat-exchange with the ambient at the free-surface. The Giesekus viscoelastic constitutive model, with appropriate modifications to account for non-isothermal effects, is employed to describe the polymeric effects. The unsteady and coupled non-linear partial differential equations (PDEs) describing the model problem are obtained and solved via efficient semi-implicit numerical schemes based on finite difference methods (FDM) implemented in Matlab. The… More >

  • Open Access

    ARTICLE

    Magnetic Field Effect and Heat Transfer of Nanofluids within Waveform Microchannel

    Mehdi Moslemi1, Motahare Mahmoodnezhad1, S. A. Edalatpanah1,*, Sulima Ahmed Mohammed Zubair2, Hamiden Abd El-Wahed Khalifa2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1957-1973, 2023, DOI:10.32604/cmes.2022.021481

    Abstract In this research, a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated. A simple coordinate transformation to transform wavy surface to a flat surface is employed. A cubic spline collocation numerical method is employed to analyze transformed equations. The effect of various parameters such as Reynolds number, volume fraction 0-, Hartmann number, and amplitude of wave length was evaluated in improving the performance of a wavy microchannel. According to the presented results, the sinusoidal shape of the microchannel has a direct impact on heat transfer. By increasing the microchannel… More >

Displaying 81-90 on page 9 of 153. Per Page