Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Toddy Palm (Borassus Flabellifer) Fruit Fibre Bundles as Reinforcement in Polylactide (PLA) Composites: An Overview About Fibre and Composite Characteristics

    Nina Graupner1,*, Koranat Narkpiban2,5, Thiprada Poonsawat3, Porntip Tooptompong4, Jörg Müssig1

    Journal of Renewable Materials, Vol.7, No.8, pp. 693-711, 2019, DOI:10.32604/jrm.2019.06785

    Abstract Toddy palm fruit have an apparent density below 0.8 g/cm³ and offer an interesting lightweight construction potential in polylactide (PLA) composites reinforced with 37 mass-% fibres. Single fibre bundles show similar mechanical properties compared with coir: tensile strength of 240 MPa, Young´s modulus of 3.8 GPa and an elongation at break of 31%. However, density and diameter (~ 50 μm) of fruit fibre bundles are significantly lower. The compression moulded composites have a density of 0.9 g/cm³ and achieved an unnotched Charpy impact strength of 12 kJ/m², a tensile strength of 25 MPa, Young’s modulus of 1.9 GPa and an… More >

  • Open Access

    ARTICLE

    Chitosan/Nanocrystalline Cellulose Biocomposites Based on Date Palm (Phoenix Dactylifera L.) Sheath Fibers

    Abeer M. Adel1, Amira M. El-Shafei2, Atef A. Ibrahim1, Mona T. Al-Shemy1,*

    Journal of Renewable Materials, Vol.7, No.6, pp. 567-582, 2019, DOI:10.32604/jrm.2019.00034

    Abstract In this study, nanocrystalline celluloses were used to enhance physical, mechanical and water vapor barrier properties of chitosan films for potential food packaging applications. Two different mineral acids (sulfuric and phosphoric) were used to extract nanocrystalline cellulose from date palm sheath fibers. The influence of cellulose I and cellulose II on the properties of the isolated nanocrystalline celluloses (e.g., yield, energy and length of intra- and intermolecular hydrogen bonds, and degree of substitution) were studied too. The characteristics of chitosan biocomposite film with phosphorylated nanocrystalline cellulose were compared to those with sulfated nanocrystalline cellulose. Results showed that besides cellulose polymorphism,… More >

  • Open Access

    ARTICLE

    Characterization of Bacterial Cellulose From Oil Palm Shoot Juices and Coconut Juice/Poly(ethylene glycol) Biocomposite

    Nantharat Phruksaphithak1,*, Chalermkiet Kaewnun2, Sompong O-Thong2

    Journal of Renewable Materials, Vol.7, No.5, pp. 493-504, 2019, DOI:10.32604/jrm.2019.00020

    Abstract A new biocomposite was preformed between bacterial cellulose (BC) pellicle and polyethylene glycol (PEG) at different concentrations (0%, 5, 10%, 15% and 20%) and different molecular weight (600, 1000 and 2000). The structure and mechanical properties of BC/PEG biocomposite were investigated. The results indicated that the properties of the BC were improved by the addition of PEG. The morphology of the BC and BC/PEG blend was examined by a scanning electron microscope (SEM). These showed that PEG was coated with a large pore size fibril on the BC and the BC/PEG was dense with an even and smooth surface. All… More >

  • Open Access

    ARTICLE

    Mechanical and Thermal Properties of Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Composites: Effect of Silane Treatment and Fiber Loading

    A. Atiqah1, M. Jawaid1,*, S. M. Sapuan1,2, M. R. Ishak3

    Journal of Renewable Materials, Vol.6, No.5, pp. 477-492, 2018, DOI:10.7569/JRM.2017.634188

    Abstract The aim of the present study was to develop sugar palm fiber (SPF) reinforced thermoplastic polyurethane (TPU) composites and to investigate the effects of fiber surface modification by 2% silane treatment and fiber loading (0, 10, 20, 30, 40 and 50 wt%) on the mechanical and thermal properties of the obtained composites. Surface treatment was employed to improve the fiber-matrix interface, which was expected to boost the mechanical strength of the composites, in terms of tensile, flexural and impact properties. Thermal properties were also investigated by thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) to assess the thermal stability… More >

  • Open Access

    ARTICLE

    Polyurethane Composites Synthesized Using Natural Oil-Based Polyols and Sisal Fibers

    S. Michałowski1, M. A. Mosiewicki2*, M. Kuran´ska1, M. I. Aranguren2, A. Prociak1

    Journal of Renewable Materials, Vol.6, No.4, pp. 426-437, 2018, DOI:10.7569/JRM.2017.634163

    Abstract Elastomeric polyurethanes were prepared from a reference polyurethane system modified with biobased polyols synthesized using rapeseed or palm oils. The reference material was modified by replacement of the commercial polyol by 10% of biopolyols and also by addition of sisal fibers up to 5 wt%. The higher functionality of the biopolyols increased the crosslinking density of the networks and this was reflected by an increase in hardness and a decrease in water absorption. The effect of the sisal fibers mainly improved the mechanical and thermomechanical properties of the system with rapeseed oil because of good dispersion and strong fiber-matrix interaction.… More >

  • Open Access

    ARTICLE

    Biomatrix from Stipa tenacissima L. and its Application in Fiberboard Using Date Palm Rachis as Filler

    Mohamed Ammar1, Ramzi Khiari2,3,4*, Mohamed Naceur Belgacem3,4*, Elimame Elaloui1

    Journal of Renewable Materials, Vol.5, No.2, pp. 116-123, 2017, DOI:10.7569/JRM.2016.634136

    Abstract The present study investigated the preparation of biomatrices from Stipa tenacissima L. and its valorization for fiberboard application. Resins were produced by extracting lignin from the Stipa tenacissima L. black liquor by soda process and combining it with glyoxal as crosslinking agent to produce lignin-glyoxal-resin (LGR). The matrix was characterized by several methods, such as FTIR and ATG/ATD, and then mixed with date palm rachis as reinforcing fibers in different proportions of 30 and 50% (w/w with respect to the matrix) to produce biodegradable composite materials. Then, their thermal and mechanical properties were determined, using differential scanning calorimetry (DSC) and… More >

  • Open Access

    ARTICLE

    Natural Fiber-Polypropylene Composites Made from Caranday Palm

    Estela Krause Sammartino1,2,3†, María Marta Reboredo4, Mirta I. Aranguren*,4

    Journal of Renewable Materials, Vol.4, No.2, pp. 101-112, 2016, DOI:10.7569/JRM.2014.634144

    Abstract Composites made from polypropylene (PP) and local South American fibers traditionally used in yarnderived craftsmanships, Caranday Palm, were studied regarding the effect of fiber addition, concentration and characteristics of the coupling agent (molecular weight and percentage of grafted maleic anhydride), as well as type of processing. A laboratory-scale intensive mixing followed by compression, and pilot plant twin extrusion followed by injection, were the two processes investigated. The use of the first one allowed the selection of processable formulations with high fiber concentration and a percentage of coupling agent below the surface fiber saturation. In fact, it was found that there… More >

  • Open Access

    ARTICLE

    Methods to Automatically Build Point Distribution Models for Objects like Hand Palms and Faces Represented in Images

    Maria João M. Vasconcelos1, João Manuel R. S. Tavares1

    CMES-Computer Modeling in Engineering & Sciences, Vol.36, No.3, pp. 213-242, 2008, DOI:10.3970/cmes.2008.036.213

    Abstract In this work we developed methods to automatically extract significant points of objects like hand palms and faces represented in images that can be used to build Point Distribution Models automatically. These models are further used to segment the modelled objects in new images, through the use of Active Shape Models or Active Appearance Models. These models showed to be efficient in the segmentation of objects, but had as drawback the fact that the labelling of the landmark points was usually manually made and consequently time consuming. Thus, in this paper we describe some methods capable to extract significant points… More >

  • Open Access

    ARTICLE

    Development and Characterization of the Midrib of Coconut Palm Leaf Reinforced Polyester Composite

    Neeraj Dubey1, Geeta Agnihotri1

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 39-56, 2015, DOI:10.3970/cmc.2015.045.039

    Abstract In this paper, midrib of coconut palm leaves (MCL) was investigated for the purpose of development of natural fiber reinforced polymer matrix composites. A new natural fiber composite as MCL/polyester is developed by the hand lay-up method, and the material and mechanical properties of the fiber, matrix and composite materials were evaluated. The effect of fiber content on the tensile, flexural, impact, compressive strength and heat distortion temperature (HDT) was investigated. It was found that the MCL fiber had the maximum tensile strength, tensile modulus flexural strength, flexural modulus and Izod impact strength of 177.5MPa, 14.85GPa, 316.04MPa and 23.54GPa, 8.23KJ/m2More >

Displaying 31-40 on page 4 of 39. Per Page