Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Fe-doped SnO2-SnS2/polypyrrole: an efficient photocatalyst for the degradation of organic pollutant in wastewater

    F. Khana, S. Noreena, M. S. Youssefb, A. Jilanic, H. T. Alib, G. Mustafad, M. Zahida,*

    Chalcogenide Letters, Vol.22, No.9, pp. 807-820, 2025, DOI:10.15251/CL.2025.229.807

    Abstract In this study Fe doped SnO2-SnS2 (FS) and Fe doped SnO2-SnS2-polypyrrole (FS-PPY) were synthesized and studied for the methylene blue (MB) egrdation under UV light. The morphological and structural characterizations were carried out by FTIR, SEM-EDX, XRD and XPS. It has been found that FS-PPy degrade methylene blue upto 98 % under optimized conditions as pH =3, dye concentration = 10 ppm, oxidant dose = 2 mM. The Langmuir-Hinshelwood kinetics model fitted well. The optimization was studied using response surface methodology. Scavengers study was carried out to find the active species. Reusability of photocatalyst was evaluated More >

  • Open Access

    ARTICLE

    Development of AgCuS nanostructures with optimized photocatalytic efficiency under solar irradiation

    S. Younus, N. Amin*, A. Ali, K. Mahmood

    Chalcogenide Letters, Vol.22, No.10, pp. 905-915, 2025, DOI:10.15251/CL.2025.2210.905

    Abstract Wastewater generated by the textile industry contains high levels of various pollutants. Advanced conventional methods, such as chemical and electrical treatments, are effective in addressing these contaminants. However, the significant operational and capital costs associated with these conventional systems limit their accessibility for industrial stakeholders. In contrast, more economically viable methods tend to be less efficient. This study aims to identify a suitable approach for integrating photocatalytic degradation (PCD) with a low-cost method to enhance the cost-effectiveness of wastewater treatment processes in the textile sector. The study utilized silver copper sulfide (AgCuS) nanocomposites as a… More >

  • Open Access

    REVIEW

    A Review: Functionalized Renewable Natural Fibers as Substrates for Photo-Driven Desalination, Photocatalysis, and Photothermal Biomedical Applications in Sustainable Photothermal Materials

    Yihang Tang1, Jing Li1, Wentao Xu1, Yao Xiao1, Jiayi Deng1, Ge Rong1, Jin Zhao2, Song Xu1, Man Zhou1,*, Zhongyu Li3,*

    Journal of Renewable Materials, Vol.13, No.10, pp. 1993-2041, 2025, DOI:10.32604/jrm.2025.02025-0065 - 22 October 2025

    Abstract Natural fibers, as a typical renewable and biodegradable material, have shown great potential for many applications (e.g., catalysis, hydrogel, biomedicine) in recent years. Recently, the growing importance of natural fibers in these photo-driven applications is reflected by the increasing number of publications. The utilization of renewable materials in photo-driven applications not only contributes to mitigating the energy crisis but also facilitates the transition of society toward a low-carbon economy, thus enabling harmonious coexistence between humans and the environment within the context of sustainable development. This paper provides an overview of the recent advances of natural… More > Graphic Abstract

    A Review: Functionalized Renewable Natural Fibers as Substrates for Photo-Driven Desalination, Photocatalysis, and Photothermal Biomedical Applications in Sustainable Photothermal Materials

  • Open Access

    ARTICLE

    Fabrication and Characterization of PANI/MgO NPs Composite Films for Photocatalysis Application

    Malak Khannoucha1,*, Boubekeur Boudine1, Imene Ameur1, Aouatef Dali2, Ouahiba Halimi1, Miloud Sebais1, Tahar Touam3

    Journal of Polymer Materials, Vol.42, No.1, pp. 205-220, 2025, DOI:10.32604/jpm.2025.059697 - 27 March 2025

    Abstract This work reports a soft chemistry approach for the synthesis of magnesium oxide nanoparticles (MgO) incorporated in a polyaniline (PANI) matrix to give PANI/MgO nanocomposite. Using spin coating method, three different percentages of MgO/PVC (1, 2, and 3% in wt.%) were deposited on glass substrates. These films of PANI/MgO nanocomposite were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-visible spectroscopy. The results of the XRD pattern revealed the embedding of MgO nanoparticles in the PANI matrix with cubic phase, with the average size of nanoparticles varying from 35.12 to 59.55 nm. The… More >

  • Open Access

    ARTICLE

    MoSe2 in flower spheres provides abundant active sites for TiO2 photocatalytic degradation of RhB

    M. Xiea, W. W. Lua, W. Yana, Y. C. Weia, Y. P. Chena,b, J. Xua,b,*

    Chalcogenide Letters, Vol.21, No.3, pp. 217-227, 2024, DOI:10.15251/CL.2024.213.217

    Abstract In this paper, a MoSe2/TiO2 composite photocatalyst was constructed by modifying TiO2 with MoSe2 as a group catalyst. The results showed that pure TiO2 and MoSe2 had no degradation activity for RhB, and the composite catalyst of 0.03 g MoSe2 had the best photocatalytic degradation activity for RhB. Through SEM, TEM, UV-VIS absorption spectrum, transient photocurrent curve, photoluminescence spectrum, and electrochemical impedance spectrum analysis, it can be seen that the excellent performance of 0.03 g MoSe2 composite sample is due to its excellent nanostructure, and uniform TiO2 nanosheets are attached to MoSe2 flower spheres. The active site of RhB photocatalytic More >

  • Open Access

    ARTICLE

    Vacancy-defect promoting blue LED-driven H2O2 synthesis on Zn0.4Cd0.6S without additional cocatalysts

    W. W. Lu, J. N. Ding, Z. Y. Wang, Y. C. Wei, Y. P. Chen, J. Xu*

    Chalcogenide Letters, Vol.21, No.8, pp. 631-640, 2024, DOI:10.15251/CL.2024.218.631

    Abstract Photocatalytic synthesis of hydrogen peroxide offers an effective solution to the energy crisis. The design and development of high-activity and low-cost photocatalysts are crucial for H2O2 production. In this work, Zn0.4Cd0.6S with abundant S vacancies (SV-ZCS) is developed for H2O2 photosynthesis under 405 nm LED illumination without additional cocatalysts. The S vacancies serve as photo-generated electron trap centers, effectively extending the lifetimes of photogenerated carriers and promoting the separation of photoelectric carriers. Additionally, SV-ZCS is endowed with enhanced light capture capability, enhancing the overall photocatalytic activity for H2O2 production. The results were in line with expectations, the SV-ZCS samples More >

  • Open Access

    ARTICLE

    Constructing TiO2/g-C3N4/Single-Walled Carbon Nanotube Hydrogel for Synergistic Solar Evaporation and Photocatalytic Organic Pollutant

    Junxiao Qiu1,2, Sanmei Liu3,4,*

    Journal of Polymer Materials, Vol.41, No.4, pp. 315-327, 2024, DOI:10.32604/jpm.2024.057951 - 16 December 2024

    Abstract Integration of solar-driven interfacial evaporation and photocatalysis is one of the most promising technologies for generating fresh water and removing pollutants. In this work, TiO2/g-C3N4 photocatalysis is loaded on a hydrogel containing single-walled carbon nanotube (SWCNT). Due to the excellent water evaporation channel of hydrogel and the excellent photothermal conversion performance of SWCNT, as well as the good visible light absorption ability of TiO2/g-C3N4, TiO2/g-C3N4/SWCNT hydrogel exhibits good hydrothermal evaporation and photocatalytic activity. The optimum water evaporation rate of 1.43 kg m−2 h−1. In particular, the optimized TiO2/g-C3N4/SWCNT hydrogel can also remove more than 90% methylene blue (MB) More > Graphic Abstract

    Constructing TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>/Single-Walled Carbon Nanotube Hydrogel for Synergistic Solar Evaporation and Photocatalytic Organic Pollutant

  • Open Access

    ARTICLE

    Characterization of undoped and doped CdS nano-thin films by ZnO for photocatalytic application

    A. Thamera, S. Mohamedb,*

    Chalcogenide Letters, Vol.20, No.12, pp. 847-856, 2023, DOI:10.15251/CL.2023.2012.847

    Abstract Using Sol-gel technology, nanocomposite CdS: ZnO thin films with an equal molar ratio of 0.5 M on a glass substrate for water decontamination purposes. The ZnO doping ratios were (0, 1, 3, 5) vol. The ultrastructural, morphological, and optical properties of the prepared thin films were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-vis spectra. The results indicated that the prepared nanostructured CdS: ZnO thin films contain uniformly spaced crystalline grains of both CdS and ZnO. The ZnO-doped selection ratio and uniform grain distribution produced outstanding photocatalytic and photocatalytic performance. With a More >

  • Open Access

    REVIEW

    Research Progress of Eco-Friendly Portland Cement Porous Concrete: A Review

    Xin Cai1,2, Fan Li1, Xingwen Guo2,*, Ren Li3, Yanan Zhang1, Qinghui Liu2, Minmin Jiang4

    Journal of Renewable Materials, Vol.11, No.1, pp. 103-130, 2023, DOI:10.32604/jrm.2022.022684 - 10 August 2022

    Abstract With the great impetus of energy conservation and emission reduction policies in various countries, the proposal of concepts such as “Sponge City” and “Eco-City”, and the emphasis on restoration and governance of ecological environment day by day, portland cement porous concrete (PCPC), as a novel building material, has attracted more and more attention from scientific researchers and engineers. PCPC possesses the peculiar pore structure, which owns numerous functions like river embankment protection, vegetation greening as well as air-cleaning, and has been of wide application in different engineering fields. This paper reviews the salient properties of More > Graphic Abstract

    Research Progress of Eco-Friendly Portland Cement Porous Concrete: A Review

  • Open Access

    REVIEW

    g-C3N4 Derived Materials for Photocatalytic Hydrogen Production: A Mini Review on Design Strategies

    Kai Su1,*, Shaoqi Deng1, Linxiao Li1, Qirui Qin1, Jingyu Yang1, Yan Chen2,3, Shengli Zhang1, Junming Chen1

    Journal of Renewable Materials, Vol.10, No.3, pp. 653-663, 2022, DOI:10.32604/jrm.2022.018556 - 28 September 2021

    Abstract Hydrogen production through solar energy is one of the most important pathways to meet the growing demand of renewable energy, and photocatalyst participation in solar hydrolytic hydrogen production has received great attention in recent years in terms of low cost, high efficiency, and flexible design. Particularly, g-C3N4 (Graphitic-like carbon nitride material), as a unique material, can catalyze the hydrogen production process by completing the separation and transmission of charge. The easily adjustable pore structure/surface area, dimension, band-gap modulation and defect have shown great potential for hydrogen production from water cracking. In this review, the most recent More > Graphic Abstract

    g-C<sub>3</sub>N<sub>4</sub> Derived Materials for Photocatalytic Hydrogen Production: A Mini Review on Design Strategies

Displaying 1-10 on page 1 of 11. Per Page