Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (67)
  • Open Access

    ARTICLE

    Polymers from Renewable Resources: Perspectives in Biomedical Applications

    Andrea Morelli, Dario Puppi, Federica Chiellini*

    Journal of Renewable Materials, Vol.1, No.2, pp. 83-112, 2013, DOI:10.7569/JRM.2012.634106

    Abstract Polymers, particularly those susceptible to undergoing biodegradation under physiological environments, can be considered the materials of choice for biomedical applications such as tissue engineering, regenerative medicine, and controlled and targeted drug delivery. The development of these relatively new fi elds of biomedical research represents the driving force towards the exploitation of renewable resources for the obtainment of biobased polymeric biomaterials. This perspective article reports on the biomedical applications of three major categories of biobased polymeric materials obtained from renewable resources, namely, polysaccharides, proteins and polyesters of natural origins. Particular emphasis is given to biobased polymers that display only minor modifi… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of New Carbohydrate-based Polyureas

    Belén Begines, Francisca Zamora, M. Violante de Paz, Isaac Roffé, Manuel Mancera, Juan A. Galbis*

    Journal of Renewable Materials, Vol.1, No.3, pp. 212-221, 2013, DOI:10.7569/JRM.2013.634119

    Abstract A batch of linear [m,n]-type sugar-based polyureas was synthesized by polyaddition reaction in solution from hexamethylene diisocyanate or 4,4’-methylene-bis(phenyl isocyanate) with the acyclic 2,3,4-tri-O-methyl-1,5- diamino-alditols having L-arabino, or xylo confi guration or the bicyclic 1,6-diamino-1,6-dideoxy-2,4:3,5-diO-methylene-D-glucitol. The polymers were obtained in good yields and fair molecular weights. All these polyureas were semicrystalline materials showing well-defi ned melting transition within the 86−171°C range, with Tg s being dependent on the aliphatic or aromatic nature of the diisocyanate used, and on the cyclic or acyclic chemical structure of the sugar moiety. They were found to be stable up to around 240°C, decomposing at… More >

  • Open Access

    ARTICLE

    Peroxide Treatment of Soy Protein Fibers Followed by Grafting of Poly(methyl acrylate) and Copolymers

    Pushpa Bhardwaj1, Susheel Kalia2,3,*, Amit Kumar1, Hemant Mittal4

    Journal of Renewable Materials, Vol.1, No.4, pp. 302-310, 2013, DOI:10.7569/JRM.2013.634123

    Abstract The objective of the present study is to elucidate the effect of peroxide treatment and graft copolymerization on water absorption behavior of soy protein fi bers in order to make them suitable as a reinforcing material. Grafting of poly(methyl acrylate) and copolymers was successfully carried out on peroxide-treated soy protein fi bers. Different reaction parameters were optimized in order to get maximum percentage grafting. The grafted fi bers were evaluated for water absorption behavior in deionized water. Maximum grafting has been found at 0.219 mol/l of methyl acrylate, 0.0096:0.145 mol/l of FAS:H2O2 , 323 K, and 90minutes. Graft copolymerization results… More >

  • Open Access

    ARTICLE

    Thermally Stable Polymers of Cardanol as Char-Forming Additives for Polypropylene

    Weeradech Kiratitanavit1, Sethumadhavan Ravichandran2,Zhiyu Xia1, Jayant Kumar3,4, Ramaswamy Nagarajan1,4,*

    Journal of Renewable Materials, Vol.1, No.4, pp. 289-301, 2013, DOI:10.7569/JRM.2013.634126

    Abstract Globally, certain types of halogenated fl ame retardant additives (FR) are becoming increasingly regulated or banned from being used in polymers. There is an immediate need for alternative non-toxic thermally stable polymers and char-forming additives. Development of non-halogenated FR for the commonly used and highly fl ammable thermoplastics, namely polyolefi ns, is particularly important and challenging. This research explores the possibility of utilizing char-forming compounds based on polymer of cardanol as an additive that can lower the heat release capacity (HRC) when blended with polypropylene (PP). Polycardanol is thermally stable and exhibits moderate HRC upon thermal decomposition and forms a… More >

  • Open Access

    ARTICLE

    Degradation Behaviour of Natural Fibre Reinforced Starch-Based Composites under Different Environmental Conditions

    Rosana Moriana1,2,*, Emma Strömberg1, Amparo Ribes2, Sigbritt Karlsson1,*

    Journal of Renewable Materials, Vol.2, No.2, pp. 145-156, 2014, DOI:10.7569/JRM.2014.634103

    Abstract The purpose of this work was to study the effect of hydrothermal, biological and photo degradation on natural fi bres reinforced biodegradable starch-based (Mater-BiKE) composites to characterize the structural changes occurring under exposure to different environments. The composites water-uptake rate was hindered by the interfacial interactions between matrix and fi bres. Thermal, structural and morphological analysis provided useful information about the irreversible changes in the properties of the composites caused by degradation in soil and photodegradation, and their synergetic effects. The effects due to the photo-oxidation and degradation in soil on the composites depended on the different chemical composition of… More >

  • Open Access

    ARTICLE

    Development and Characterisation of Phenolic Foams with Phenol-Formaldehyde-Chestnut Tannins Resin

    M.C. Lagel1, A. Pizzi1,2, S. Giovando3, A. Celzard4

    Journal of Renewable Materials, Vol.2, No.3, pp. 220-229, 2014, DOI:10.7569/JRM.2014.634113

    Abstract With the depletion of fossil resources, tannin extracts can be a natural alternative to some synthetic products. Hydrolysable chestnut tannin extracts have been used to partially replace phenol in PF resins for phenolic rigid foams. Phenol-formaldehyde-chestnut tannin (PFT) phenolic foams were initially made from copolymerized PFT resins of different molar ratio. The PFT foams so prepared were tested for thermal conductivity, these being slightly worse than that of pure PF foams; and for mechanical and water absorption, these two properties being better than those of pure PF foams. Indeed, PF resins represent an important part of synthetic resins. They are… More >

  • Open Access

    ARTICLE

    Matrix-Assisted Laser Desorption-Ionization Time of Flight (MALDI-TOF) Mass Spectrometry of Phenol-FormaldehydeChestnut Tannin Resins

    M.C. Lagel1,*, A. Pizzi1,2, S. Giovando3

    Journal of Renewable Materials, Vol.2, No.3, pp. 207-219, 2014, DOI:10.7569/JRM.2014.634111

    Abstract Natural hydrolysable chestnut tannin extracts used to partially substitute phenol in Phenol-Formaldehyde (PF) resins for phenolic rigid foams were analysed by matrix-assisted desorption ionization time of fl ight (MALDI-TOF) mass spectrometry. PF only, chestnut only and PF-chestnut copolymerised oligomer types and distribution were determined. MALDI-TOF analyses of a PF control resin (with the same molar ratio) and of chestnut tannin extracts were performed in order to identify the peaks of molecular weights corresponding to copolymers of chestnut tannins with phenol and formaldehyde. More >

  • Open Access

    ARTICLE

    Synthesis of Polyamides and Their Copolymers via Enzymatic Polymerization

    Erythrina Stavila, Katja Loos*

    Journal of Renewable Materials, Vol.3, No.4, pp. 268-280, 2015, DOI:10.7569/JRM.2015.634102

    Abstract The selective and specific features of enzymes have drawn an enormous amount of attention for use as in-vitro catalysts in polymerization reactions. Various studies on the enzymatic synthesis of polyesters, polycarbonates, polysaccharides, polypeptides, and polyamides have been performed and some have been implemented on an industrial scale. Particularly in the synthesis of polyester and polyamides, lipases are the most used enzymes as catalysts for their polymerization. Polyamides are considered to be one of the largest engineering polymer families used in the automotive, electrical and electronics, and consumer goods industries; thus the enzymatic synthesis of polyamides will have a tremendous impact… More >

  • Open Access

    ARTICLE

    Utilization of Bitter Orange Seed as a Novel Pectin Source: Compositional and Rheological Characterization

    Diako Khodaei1, Mohammad Nejatian2,*, Hassan Ahmadi Gavlighi2, Farhad Garavand3,*, Ilaria Cacciotti4

    Journal of Renewable Materials, Vol.10, No.11, pp. 2805-2817, 2022, DOI:10.32604/jrm.2022.021752

    Abstract The seeds from bitter orange, the by-product of juice making units, hold the potential to facilitate novel, easy yet high-quality pectin extraction. To test this hypothesis, orange seed pectin (OSP) was extracted by distilled water and its compositional parameters and rheological behavior were then evaluated. Results showed that galacturonic acid was the major component of OSP (∼425 mg/g) confirming the purity of the extracted pectin, followed by glucose and some minor neutral sugars. The Mw (weight-average molar mass), Rn (number average molar mass), and Rz (z-average molar mass) values for the OSP were 4511.8 kDa, 61 nm, and 61.1 nm,… More > Graphic Abstract

    Utilization of Bitter Orange Seed as a Novel Pectin Source: Compositional and Rheological Characterization

  • Open Access

    ARTICLE

    Study on the Properties of Esterified Corn Starch/Polylactide Biodegradable Blends

    Yongjie Zheng1,2,3,*, Mingjian Xu1, Jingzhi Tian1, Meihong Yu1, Bin Tan4, Hong Zhao2,3,*, Yin Tang2,3

    Journal of Renewable Materials, Vol.10, No.11, pp. 2949-2959, 2022, DOI:10.32604/jrm.2022.019702

    Abstract Fully bio-based and biodegradable starch/polylactic acid blends have received increasing attentions for their biodegradability and potential to offset the use of unsustainable fossil resources, specifically, their application in packaging. Herein, corn starch was first esterified with maleic anhydride and then compounded with polylactide (PLA) to prepare esterified corn starch/polylactic acid blends with starch content up to 35 wt%. The structures, morphologies, thermal and mechanical properties of starch or blends were investigated. The results showed that corn starch was successfully grafted with maleic anhydride, which showed increased crystallinity and particle size than native starch. Esterified corn starch/polylactic acid blends showed good… More >

Displaying 21-30 on page 3 of 67. Per Page